Abstract:Cloud removal is an essential task in remote sensing data analysis. As the image sensors are distant from the earth ground, it is likely that part of the area of interests is covered by cloud. Moreover, the atmosphere in between creates a constant haze layer upon the acquired images. To recover the ground image, we propose to use scattering model for temporal sequence of images of any scene in the framework of low rank and sparse models. We further develop its variant, which is much faster and yet more accurate. To measure the performance of different methods {\em objectively}, we develop a semi-realistic simulation method to produce cloud cover so that various methods can be quantitatively analysed, which enables detailed study of many aspects of cloud removal algorithms, including verifying the effectiveness of proposed models in comparison with the state-of-the-arts, including deep learning models, and addressing the long standing problem of the determination of regularisation parameters. The latter is companioned with theoretic analysis on the range of the sparsity regularisation parameter and verified numerically.
Abstract:Recently CNN-based RGB-D salient object detection (SOD) has obtained significant improvement on detection accuracy. However, existing models often fail to perform well in terms of efficiency and accuracy simultaneously. This hinders their potential applications on mobile devices as well as many real-world problems. To bridge the accuracy gap between lightweight and large models for RGB-D SOD, in this paper, an efficient module that can greatly improve the accuracy but adds little computation is proposed. Inspired by the fact that depth quality is a key factor influencing the accuracy, we propose an efficient depth quality-inspired feature manipulation (DQFM) process, which can dynamically filter depth features according to depth quality. The proposed DQFM resorts to the alignment of low-level RGB and depth features, as well as holistic attention of the depth stream to explicitly control and enhance cross-modal fusion. We embed DQFM to obtain an efficient lightweight RGB-D SOD model called DFM-Net, where we in addition design a tailored depth backbone and a two-stage decoder as basic parts. Extensive experimental results on nine RGB-D datasets demonstrate that our DFM-Net outperforms recent efficient models, running at about 20 FPS on CPU with only 8.5Mb model size, and meanwhile being 2.9/2.4 times faster and 6.7/3.1 times smaller than the latest best models A2dele and MobileSal. It also maintains state-of-the-art accuracy when even compared to non-efficient models. Interestingly, further statistics and analyses verify the ability of DQFM in distinguishing depth maps of various qualities without any quality labels. Last but not least, we further apply DFM-Net to deal with video SOD (VSOD), achieving comparable performance against recent efficient models while being 3/2.3 times faster/smaller than the prior best in this field. Our code is available at https://github.com/zwbx/DFM-Net.
Abstract:With diverse presentation attacks emerging continually, generalizable face anti-spoofing (FAS) has drawn growing attention. Most existing methods implement domain generalization (DG) on the complete representations. However, different image statistics may have unique properties for the FAS tasks. In this work, we separate the complete representation into content and style ones. A novel Shuffled Style Assembly Network (SSAN) is proposed to extract and reassemble different content and style features for a stylized feature space. Then, to obtain a generalized representation, a contrastive learning strategy is developed to emphasize liveness-related style information while suppress the domain-specific one. Finally, the representations of the correct assemblies are used to distinguish between living and spoofing during the inferring. On the other hand, despite the decent performance, there still exists a gap between academia and industry, due to the difference in data quantity and distribution. Thus, a new large-scale benchmark for FAS is built up to further evaluate the performance of algorithms in reality. Both qualitative and quantitative results on existing and proposed benchmarks demonstrate the effectiveness of our methods. The codes will be available at https://github.com/wangzhuo2019/SSAN.
Abstract:Rule-based models, e.g., decision trees, are widely used in scenarios demanding high model interpretability for their transparent inner structures and good model expressivity. However, rule-based models are hard to optimize, especially on large data sets, due to their discrete parameters and structures. Ensemble methods and fuzzy/soft rules are commonly used to improve performance, but they sacrifice the model interpretability. To obtain both good scalability and interpretability, we propose a new classifier, named Rule-based Representation Learner (RRL), that automatically learns interpretable non-fuzzy rules for data representation and classification. To train the non-differentiable RRL effectively, we project it to a continuous space and propose a novel training method, called Gradient Grafting, that can directly optimize the discrete model using gradient descent. An improved design of logical activation functions is also devised to increase the scalability of RRL and enable it to discretize the continuous features end-to-end. Exhaustive experiments on nine small and four large data sets show that RRL outperforms the competitive interpretable approaches and can be easily adjusted to obtain a trade-off between classification accuracy and model complexity for different scenarios. Our code is available at: https://github.com/12wang3/rrl.
Abstract:RGB-D salient object detection (SOD) recently has attracted increasing research interest by benefiting conventional RGB SOD with extra depth information. However, existing RGB-D SOD models often fail to perform well in terms of both efficiency and accuracy, which hinders their potential applications on mobile devices and real-world problems. An underlying challenge is that the model accuracy usually degrades when the model is simplified to have few parameters. To tackle this dilemma and also inspired by the fact that depth quality is a key factor influencing the accuracy, we propose a novel depth quality-inspired feature manipulation (DQFM) process, which is efficient itself and can serve as a gating mechanism for filtering depth features to greatly boost the accuracy. DQFM resorts to the alignment of low-level RGB and depth features, as well as holistic attention of the depth stream to explicitly control and enhance cross-modal fusion. We embed DQFM to obtain an efficient light-weight model called DFM-Net, where we also design a tailored depth backbone and a two-stage decoder for further efficiency consideration. Extensive experimental results demonstrate that our DFM-Net achieves state-of-the-art accuracy when comparing to existing non-efficient models, and meanwhile runs at 140ms on CPU (2.2$\times$ faster than the prior fastest efficient model) with only $\sim$8.5Mb model size (14.9% of the prior lightest). Our code will be available at https://github.com/zwbx/DFM-Net.
Abstract:With the implementation of reinforcement learning (RL) algorithms, current state-of-art autonomous vehicle technology have the potential to get closer to full automation. However, most of the applications have been limited to game domains or discrete action space which are far from the real world driving. Moreover, it is very tough to tune the parameters of reward mechanism since the driving styles vary a lot among the different users. For instance, an aggressive driver may prefer driving with high acceleration whereas some conservative drivers prefer a safer driving style. Therefore, we propose an apprenticeship learning in combination with deep reinforcement learning approach that allows the agent to learn the driving and stopping behaviors with continuous actions. We use gradient inverse reinforcement learning (GIRL) algorithm to recover the unknown reward function and employ REINFORCE as well as Deep Deterministic Policy Gradient algorithm (DDPG) to learn the optimal policy. The performance of our method is evaluated in simulation-based scenario and the results demonstrate that the agent performs human like driving and even better in some aspects after training.
Abstract:Models with transparent inner structure and high classification performance are required to reduce potential risk and provide trust for users in domains like health care, finance, security, etc. However, existing models are hard to simultaneously satisfy the above two properties. In this paper, we propose a new hierarchical rule-based model for classification tasks, named Concept Rule Sets (CRS), which has both a strong expressive ability and a transparent inner structure. To address the challenge of efficiently learning the non-differentiable CRS model, we propose a novel neural network architecture, Multilayer Logical Perceptron (MLLP), which is a continuous version of CRS. Using MLLP and the Random Binarization (RB) method we proposed, we can search the discrete solution of CRS in continuous space using gradient descent and ensure the discrete CRS acts almost the same as the corresponding continuous MLLP. Experiments on 12 public data sets show that CRS outperforms the state-of-the-art approaches and the complexity of the learned CRS is close to the simple decision tree.
Abstract:Product reviews are extremely valuable for online shoppers in providing purchase decisions. Driven by immense profit incentives, fraudsters deliberately fabricate untruthful reviews to distort the reputation of online products. As online reviews become more and more important, group spamming, i.e., a team of fraudsters working collaboratively to attack a set of target products, becomes a new fashion. Previous works use review network effects, i.e. the relationships among reviewers, reviews, and products, to detect fake reviews or review spammers, but ignore time effects, which are critical in characterizing group spamming. In this paper, we propose a novel Markov random field (MRF)-based method (ColluEagle) to detect collusive review spammers, as well as review spam campaigns, considering both network effects and time effects. First we identify co-review pairs, a review phenomenon that happens between two reviewers who review a common product in a similar way, and then model reviewers and their co-review pairs as a pairwise-MRF, and use loopy belief propagation to evaluate the suspiciousness of reviewers. We further design a high quality yet easy-to-compute node prior for ColluEagle, through which the review spammer groups can also be subsequently identified. Experiments show that ColluEagle can not only detect collusive spammers with high precision, significantly outperforming state-of-the-art baselines --- FraudEagle and SpEagle, but also identify highly suspicious review spammer campaigns.
Abstract:Deep learning algorithms achieve high classification accuracy at the expense of significant computation cost. In order to reduce this cost, several quantization schemes have gained attention recently with some focusing on weight quantization, and others focusing on quantizing activations. This paper proposes novel techniques that target weight and activation quantizations separately resulting in an overall quantized neural network (QNN). The activation quantization technique, PArameterized Clipping acTivation (PACT), uses an activation clipping parameter $\alpha$ that is optimized during training to find the right quantization scale. The weight quantization scheme, statistics-aware weight binning (SAWB), finds the optimal scaling factor that minimizes the quantization error based on the statistical characteristics of the distribution of weights without the need for an exhaustive search. The combination of PACT and SAWB results in a 2-bit QNN that achieves state-of-the-art classification accuracy (comparable to full precision networks) across a range of popular models and datasets.
Abstract:Deep learning algorithms achieve high classification accuracy at the expense of significant computation cost. To address this cost, a number of quantization schemes have been proposed - but most of these techniques focused on quantizing weights, which are relatively smaller in size compared to activations. This paper proposes a novel quantization scheme for activations during training - that enables neural networks to work well with ultra low precision weights and activations without any significant accuracy degradation. This technique, PArameterized Clipping acTivation (PACT), uses an activation clipping parameter $\alpha$ that is optimized during training to find the right quantization scale. PACT allows quantizing activations to arbitrary bit precisions, while achieving much better accuracy relative to published state-of-the-art quantization schemes. We show, for the first time, that both weights and activations can be quantized to 4-bits of precision while still achieving accuracy comparable to full precision networks across a range of popular models and datasets. We also show that exploiting these reduced-precision computational units in hardware can enable a super-linear improvement in inferencing performance due to a significant reduction in the area of accelerator compute engines coupled with the ability to retain the quantized model and activation data in on-chip memories.