Abstract:Heterogeneous domain adaptation (HDA) transfers knowledge across source and target domains that present heterogeneities e.g., distinct domain distributions and difference in feature type or dimension. Most previous HDA methods tackle this problem through learning a domain-invariant feature subspace to reduce the discrepancy between domains. However, the intrinsic semantic properties contained in data are under-explored in such alignment strategy, which is also indispensable to achieve promising adaptability. In this paper, we propose a Simultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains. In particular, we propose an implicit semantic correlation loss to transfer the correlation knowledge of source categorical prediction distributions to target domain. Meanwhile, by leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category. Notably, a pseudo-label refinement procedure with geometric similarity involved is introduced to enhance the target pseudo-label assignment accuracy. Comprehensive experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods. The code is publicly available at https://github.com/BIT-DA/SSAN.
Abstract:Existing domain adaptation methods aim to reduce the distributional difference between the source and target domains and respect their specific discriminative information, by establishing the Maximum Mean Discrepancy (MMD) and the discriminative distances. However, they usually accumulate to consider those statistics and deal with their relationships by estimating parameters blindly. This paper theoretically proves two essential facts: 1) minimizing the MMD equals to maximize the source and target intra-class distances respectively but jointly minimize their variance with some implicit weights, so that the feature discriminability degrades; 2) the relationship between the intra-class and inter-class distances is as one falls, another rises. Based on this, we propose a novel discriminative MMD. On one hand, we consider the intra-class and inter-class distances alone to remove a redundant parameter, and the revealed weights provide their approximate optimal ranges. On the other hand, we design two different strategies to boost the feature discriminability: 1) we directly impose a trade-off parameter on the implicit intra-class distance in MMD to regulate its change; 2) we impose the similar weights revealed in MMD on inter-class distance and maximize it, then a balanced factor could be introduced to quantitatively leverage the relative importance between the feature transferability and its discriminability. The experiments on several benchmark datasets not only prove the validity of theoretical results but also demonstrate that our approach could perform better than the comparative state-of-art methods substantially.
Abstract:Unsupervised domain adaptation targets to transfer task knowledge from labeled source domain to related yet unlabeled target domain, and is catching extensive interests from academic and industrial areas. Although tremendous efforts along this direction have been made to minimize the domain divergence, unfortunately, most of existing methods only manage part of the picture by aligning feature representations from different domains. Beyond the discrepancy in feature space, the gap between known source label and unknown target label distribution, recognized as label distribution drift, is another crucial factor raising domain divergence, and has not been paid enough attention and well explored. From this point, in this paper, we first experimentally reveal how label distribution drift brings negative effects on current domain adaptation methods. Next, we propose Label distribution Matching Domain Adversarial Network (LMDAN) to handle data distribution shift and label distribution drift jointly. In LMDAN, label distribution drift problem is addressed by the proposed source samples weighting strategy, which select samples to contribute to positive adaptation and avoid negative effects brought by the mismatched in label distribution. Finally, different from general domain adaptation experiments, we modify domain adaptation datasets to create the considerable label distribution drift between source and target domain. Numerical results and empirical model analysis show that LMDAN delivers superior performance compared to other state-of-the-art domain adaptation methods under such scenarios.
Abstract:Tremendous research efforts have been made to thrive deep domain adaptation (DA) by seeking domain-invariant features. Most existing deep DA models only focus on aligning feature representations of task-specific layers across domains while integrating a totally shared convolutional architecture for source and target. However, we argue that such strongly-shared convolutional layers might be harmful for domain-specific feature learning when source and target data distribution differs to a large extent. In this paper, we relax a shared-convnets assumption made by previous DA methods and propose a Domain Conditioned Adaptation Network (DCAN), which aims to excite distinct convolutional channels with a domain conditioned channel attention mechanism. As a result, the critical low-level domain-dependent knowledge could be explored appropriately. As far as we know, this is the first work to explore the domain-wise convolutional channel activation for deep DA networks. Moreover, to effectively align high-level feature distributions across two domains, we further deploy domain conditioned feature correction blocks after task-specific layers, which will explicitly correct the domain discrepancy. Extensive experiments on three cross-domain benchmarks demonstrate the proposed approach outperforms existing methods by a large margin, especially on very tough cross-domain learning tasks.
Abstract:Domain Adaptation (DA) aims to generalize the classifier learned from the source domain to the target domain. Existing DA methods usually assume that rich labels could be available in the source domain. However, there are usually a large number of unlabeled data but only a few labeled data in the source domain, and how to transfer knowledge from this sparsely-labeled source domain to the target domain is still a challenge, which greatly limits their application in the wild. This paper proposes a novel Sparsely-Labeled Source Assisted Domain Adaptation (SLSA-DA) algorithm to address the challenge with limited labeled source domain samples. Specifically, due to the label scarcity problem, the projected clustering is conducted on both the source and target domains, so that the discriminative structures of data could be leveraged elegantly. Then the label propagation is adopted to propagate the labels from those limited labeled source samples to the whole unlabeled data progressively, so that the cluster labels are revealed correctly. Finally, we jointly align the marginal and conditional distributions to mitigate the cross-domain mismatch problem, and optimize those three procedures iteratively. However, it is nontrivial to incorporate those three procedures into a unified optimization framework seamlessly since some variables to be optimized are implicitly involved in their formulas, thus they could not promote to each other. Remarkably, we prove that the projected clustering and conditional distribution alignment could be reformulated as different expressions, thus the implicit variables are revealed in different optimization steps. As such, the variables related to those three quantities could be optimized in a unified optimization framework and facilitate to each other, to improve the recognition performance obviously.
Abstract:Deep domain adaptation methods have achieved appealing performance by learning transferable representations from a well-labeled source domain to a different but related unlabeled target domain. Most existing works assume source and target data share the identical label space, which is often difficult to be satisfied in many real-world applications. With the emergence of big data, there is a more practical scenario called partial domain adaptation, where we are always accessible to a more large-scale source domain while working on a relative small-scale target domain. In this case, the conventional domain adaptation assumption should be relaxed, and the target label space tends to be a subset of the source label space. Intuitively, reinforcing the positive effects of the most relevant source subclasses and reducing the negative impacts of irrelevant source subclasses are of vital importance to address partial domain adaptation challenge. This paper proposes an efficiently-implemented Deep Residual Correction Network (DRCN) by plugging one residual block into the source network along with the task-specific feature layer, which effectively enhances the adaptation from source to target and explicitly weakens the influence from the irrelevant source classes. Specifically, the plugged residual block, which consists of several fully-connected layers, could deepen basic network and boost its feature representation capability correspondingly. Moreover, we design a weighted class-wise domain alignment loss to couple two domains by matching the feature distributions of shared classes between source and target. Comprehensive experiments on partial, traditional and fine-grained cross-domain visual recognition demonstrate that DRCN is superior to the competitive deep domain adaptation approaches.
Abstract:Nowadays, with the rapid development of data collection sources and feature extraction methods, multi-view data are getting easy to obtain and have received increasing research attention in recent years, among which, multi-view clustering (MVC) forms a mainstream research direction and is widely used in data analysis. However, existing MVC methods mainly assume that each sample appears in all the views, without considering the incomplete view case due to data corruption, sensor failure, equipment malfunction, etc. In this study, we design and build a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem by explicitly generating the data of missing views. The main idea of GP-MVC lies at two-fold. First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views. Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views. These two steps could be promoted mutually, where learning common representations facilitates data imputation and the generated data could further explores the view consistency. Moreover, an weighted adaptive fusion scheme is implemented to exploit the complementary information among different views. Experimental results on four benchmark datasets are provided to show the effectiveness of the proposed GP-MVC over the state-of-the-art methods.
Abstract:Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions. Existing DA normally assumes the well-labeled source domain is class-wise balanced, which means the size per source class is relatively similar. However, in real-world applications, labeled samples for some categories in the source domain could be extremely few due to the difficulty of data collection and annotation, which leads to decreasing performance over target domain on those few-shot categories. To perform fair cross-domain adaptation and boost the performance on these minority categories, we develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification. Specifically, generative feature augmentation is explored to synthesize effective training data for few-shot source classes, while effective cross-domain alignment aims to adapt knowledge from source to facilitate the target learning. Experimental results on two large cross-domain visual datasets demonstrate the effectiveness of our proposed method on improving both few-shot and overall classification accuracy comparing with the state-of-the-art DA approaches.
Abstract:Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information. The conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure. To balance the mitigation of domain gap and the preservation of the inherent structure, we propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains. Specifically, two cross-domain generators are employed to synthesize one domain conditioned on the other. The performance of our proposed method can be further enhanced by the consistent classifiers and the cross-domain alignment constraints. We also design two classifiers which are jointly optimized to maximize the consistency on target sample prediction. Extensive experiments verify that our proposed model outperforms the state-of-the-art on standard cross domain visual benchmarks.
Abstract:Many domain adaptation (DA) methods aim to project the source and target domains into a common feature space, where the inter-domain distributional differences are reduced and some intra-domain properties preserved. Recent research obtains their respective new representations using some predefined statistics. However, they usually formulate the class-wise statistics using the pseudo hard labels due to no labeled target data, such as class-wise MMD and class scatter matrice. The probabilities of data points belonging to each class given by the hard labels are either 0 or 1, while the soft labels could relax the strong constraint of hard labels and provide a random value between them. Although existing work have noticed the advantage of soft labels, they either deal with thoes class-wise statistics inadequately or introduce those small irrelevant probabilities in soft labels. Therefore, we propose the filtered soft labels to discard thoes confusing probabilities, then both of the class-wise MMD and class scatter matrice are modeled in this way. In order to obtain more accurate filtered soft labels, we take advantage of a well-designed Graph-based Label Propagation (GLP) method, and incorporate it into the DA procedure to formulate a unified framework.