Abstract:The pelvis, the lower part of the trunk, supports and balances the trunk. Landmark detection from a pelvic X-ray (PXR) facilitates downstream analysis and computer-assisted diagnosis and treatment of pelvic diseases. Although PXRs have the advantages of low radiation and reduced cost compared to computed tomography (CT) images, their 2D pelvis-tissue superposition of 3D structures confuses clinical decision-making. In this paper, we propose a PELvis Extraction (PELE) module that utilizes 3D prior anatomical knowledge in CT to guide and well isolate the pelvis from PXRs, thereby eliminating the influence of soft tissue. We conduct an extensive evaluation based on two public datasets and one private dataset, totaling 850 PXRs. The experimental results show that the proposed PELE module significantly improves the accuracy of PXRs landmark detection and achieves state-of-the-art performances in several benchmark metrics, thus better serving downstream tasks.
Abstract:Dataset expansion can effectively alleviate the problem of data scarcity for medical image segmentation, due to privacy concerns and labeling difficulties. However, existing expansion algorithms still face great challenges due to their inability of guaranteeing the diversity of synthesized images with paired segmentation masks. In recent years, Diffusion Probabilistic Models (DPMs) have shown powerful image synthesis performance, even better than Generative Adversarial Networks. Based on this insight, we propose an approach called DiffuseExpand for expanding datasets for 2D medical image segmentation using DPM, which first samples a variety of masks from Gaussian noise to ensure the diversity, and then synthesizes images to ensure the alignment of images and masks. After that, DiffuseExpand chooses high-quality samples to further enhance the effectiveness of data expansion. Our comparison and ablation experiments on COVID-19 and CGMH Pelvis datasets demonstrate the effectiveness of DiffuseExpand. Our code is released at https://anonymous.4open.science/r/DiffuseExpand.
Abstract:Temporal relation prediction in incomplete temporal knowledge graphs (TKGs) is a popular temporal knowledge graph completion (TKGC) problem in both transductive and inductive settings. Traditional embedding-based TKGC models (TKGE) rely on structured connections and can only handle a fixed set of entities, i.e., the transductive setting. In the inductive setting where test TKGs contain emerging entities, the latest methods are based on symbolic rules or pre-trained language models (PLMs). However, they suffer from being inflexible and not time-specific, respectively. In this work, we extend the fully-inductive setting, where entities in the training and test sets are totally disjoint, into TKGs and take a further step towards a more flexible and time-sensitive temporal relation prediction approach SST-BERT, incorporating Structured Sentences with Time-enhanced BERT. Our model can obtain the entity history and implicitly learn rules in the semantic space by encoding structured sentences, solving the problem of inflexibility. We propose to use a time masking MLM task to pre-train BERT in a corpus rich in temporal tokens specially generated for TKGs, enhancing the time sensitivity of SST-BERT. To compute the probability of occurrence of a target quadruple, we aggregate all its structured sentences from both temporal and semantic perspectives into a score. Experiments on the transductive datasets and newly generated fully-inductive benchmarks show that SST-BERT successfully improves over state-of-the-art baselines.
Abstract:Generative models, such as Variational Auto-Encoder (VAE) and Generative Adversarial Network (GAN), have been successfully applied in sequential recommendation. These methods require sampling from probability distributions and adopt auxiliary loss functions to optimize the model, which can capture the uncertainty of user behaviors and alleviate exposure bias. However, existing generative models still suffer from the posterior collapse problem or the model collapse problem, thus limiting their applications in sequential recommendation. To tackle the challenges mentioned above, we leverage a new paradigm of the generative models, i.e., diffusion models, and present sequential recommendation with diffusion models (DiffRec), which can avoid the issues of VAE- and GAN-based models and show better performance. While diffusion models are originally proposed to process continuous image data, we design an additional transition in the forward process together with a transition in the reverse process to enable the processing of the discrete recommendation data. We also design a different noising strategy that only noises the target item instead of the whole sequence, which is more suitable for sequential recommendation. Based on the modified diffusion process, we derive the objective function of our framework using a simplification technique and design a denoise sequential recommender to fulfill the objective function. As the lengthened diffusion steps substantially increase the time complexity, we propose an efficient training strategy and an efficient inference strategy to reduce training and inference cost and improve recommendation diversity. Extensive experiment results on three public benchmark datasets verify the effectiveness of our approach and show that DiffRec outperforms the state-of-the-art sequential recommendation models.
Abstract:In the last few years, the solution to Knowledge Graph (KG) completion via learning embeddings of entities and relations has attracted a surge of interest. Temporal KGs(TKGs) extend traditional Knowledge Graphs (KGs) by associating static triples with timestamps forming quadruples. Different from KGs and TKGs in the transductive setting, constantly emerging entities and relations in incomplete TKGs create demand to predict missing facts with unseen components, which is the extrapolation setting. Traditional temporal knowledge graph embedding (TKGE) methods are limited in the extrapolation setting since they are trained within a fixed set of components. In this paper, we propose a Meta-Learning based Temporal Knowledge Graph Extrapolation (MTKGE) model, which is trained on link prediction tasks sampled from the existing TKGs and tested in the emerging TKGs with unseen entities and relations. Specifically, we meta-train a GNN framework that captures relative position patterns and temporal sequence patterns between relations. The learned embeddings of patterns can be transferred to embed unseen components. Experimental results on two different TKG extrapolation datasets show that MTKGE consistently outperforms both the existing state-of-the-art models for knowledge graph extrapolation and specifically adapted KGE and TKGE baselines.
Abstract:In real teaching scenarios, an excellent teacher always teaches what he (or she) is good at but the student is not. This method gives the student the best assistance in making up for his (or her) weaknesses and becoming a good one overall. Enlightened by this, we introduce the approach to the knowledge distillation framework and propose a data-based distillation method named ``Teaching what you Should Teach (TST)''. To be specific, TST contains a neural network-based data augmentation module with the priori bias, which can assist in finding what the teacher is good at while the student are not by learning magnitudes and probabilities to generate suitable samples. By training the data augmentation module and the generalized distillation paradigm in turn, a student model that has excellent generalization ability can be created. To verify the effectiveness of TST, we conducted extensive comparative experiments on object recognition (CIFAR-100 and ImageNet-1k), detection (MS-COCO), and segmentation (Cityscapes) tasks. As experimentally demonstrated, TST achieves state-of-the-art performance on almost all teacher-student pairs. Furthermore, we conduct intriguing studies of TST, including how to solve the performance degradation caused by the stronger teacher and what magnitudes and probabilities are needed for the distillation framework.
Abstract:Maximum mutual information (MMI) has become one of the two de facto methods for sequence-level training of speech recognition acoustic models. This paper aims to isolate, identify and bring forward the implicit modelling decisions induced by the design implementation of standard finite state transducer (FST) lattice based MMI training framework. The paper particularly investigates the necessity to maintain a preselected numerator alignment and raises the importance of determinizing FST denominator lattices on the fly. The efficacy of employing on the fly FST lattice determinization is mathematically shown to guarantee discrimination at the hypothesis level and is empirically shown through training deep CNN models on a 18K hours Mandarin dataset and on a 2.8K hours English dataset. On assistant and dictation tasks, the approach achieves between 2.3-4.6% relative WER reduction (WERR) over the standard FST lattice based approach.
Abstract:With the rapid development of automatic fake news detection technology, fact extraction and verification (FEVER) has been attracting more attention. The task aims to extract the most related fact evidences from millions of open-domain Wikipedia documents and then verify the credibility of corresponding claims. Although several strong models have been proposed for the task and they have made great progress, we argue that they fail to utilize multi-view contextual information and thus cannot obtain better performance. In this paper, we propose to integrate multi-view contextual information (IMCI) for fact extraction and verification. For each evidence sentence, we define two kinds of context, i.e. intra-document context and inter-document context}. Intra-document context consists of the document title and all the other sentences from the same document. Inter-document context consists of all other evidences which may come from different documents. Then we integrate the multi-view contextual information to encode the evidence sentences to handle the task. Our experimental results on FEVER 1.0 shared task show that our IMCI framework makes great progress on both fact extraction and verification, and achieves state-of-the-art performance with a winning FEVER score of 72.97% and label accuracy of 75.84% on the online blind test set. We also conduct ablation study to detect the impact of multi-view contextual information. Our codes will be released at https://github.com/phoenixsecularbird/IMCI.
Abstract:Single image deraining (SID) in real scenarios attracts increasing attention in recent years. Due to the difficulty in obtaining real-world rainy/clean image pairs, previous real datasets suffer from low-resolution images, homogeneous rain streaks, limited background variation, and even misalignment of image pairs, resulting in incomprehensive evaluation of SID methods. To address these issues, we establish a new high-quality dataset named RealRain-1k, consisting of $1,120$ high-resolution paired clean and rainy images with low- and high-density rain streaks, respectively. Images in RealRain-1k are automatically generated from a large number of real-world rainy video clips through a simple yet effective rain density-controllable filtering method, and have good properties of high image resolution, background diversity, rain streaks variety, and strict spatial alignment. RealRain-1k also provides abundant rain streak layers as a byproduct, enabling us to build a large-scale synthetic dataset named SynRain-13k by pasting the rain streak layers on abundant natural images. Based on them and existing datasets, we benchmark more than 10 representative SID methods on three tracks: (1) fully supervised learning on RealRain-1k, (2) domain generalization to real datasets, and (3) syn-to-real transfer learning. The experimental results (1) show the difference of representative methods in image restoration performance and model complexity, (2) validate the significance of the proposed datasets for model generalization, and (3) provide useful insights on the superiority of learning from diverse domains and shed lights on the future research on real-world SID. The datasets will be released at https://github.com/hiker-lw/RealRain-1k
Abstract:Using a pre-trained language model (i.e. BERT) to apprehend source codes has attracted increasing attention in the natural language processing community. However, there are several challenges when it comes to applying these language models to solve programming language (PL) related problems directly, the significant one of which is the lack of domain knowledge issue that substantially deteriorates the model's performance. To this end, we propose the AstBERT model, a pre-trained language model aiming to better understand the PL using the abstract syntax tree (AST). Specifically, we collect a colossal amount of source codes (both java and python) from GitHub and incorporate the contextual code knowledge into our model through the help of code parsers, in which AST information of the source codes can be interpreted and integrated. We verify the performance of the proposed model on code information extraction and code search tasks, respectively. Experiment results show that our AstBERT model achieves state-of-the-art performance on both downstream tasks (with 96.4% for code information extraction task, and 57.12% for code search task).