Abstract:Precise event spotting (PES) aims to recognize fine-grained events at exact moments and has become a key component of sports analytics. This task is particularly challenging due to rapid succession, motion blur, and subtle visual differences. Consequently, most existing methods rely on domain-specific, end-to-end training with large labeled datasets and often struggle in few-shot conditions due to their dependence on pixel- or pose-based inputs alone. However, obtaining large labeled datasets is practically hard. We propose a Unified Multi-Entity Graph Network (UMEG-Net) for few-shot PES. UMEG-Net integrates human skeletons and sport-specific object keypoints into a unified graph and features an efficient spatio-temporal extraction module based on advanced GCN and multi-scale temporal shift. To further enhance performance, we employ multimodal distillation to transfer knowledge from keypoint-based graphs to visual representations. Our approach achieves robust performance with limited labeled data and significantly outperforms baseline models in few-shot settings, providing a scalable and effective solution for few-shot PES. Code is publicly available at https://github.com/LZYAndy/UMEG-Net.




Abstract:Generative recommendation has recently emerged as a promising paradigm in information retrieval. However, generative ranking systems are still understudied, particularly with respect to their effectiveness and feasibility in large-scale industrial settings. This paper investigates this topic at the ranking stage of Xiaohongshu's Explore Feed, a recommender system that serves hundreds of millions of users. Specifically, we first examine how generative ranking outperforms current industrial recommenders. Through theoretical and empirical analyses, we find that the primary improvement in effectiveness stems from the generative architecture, rather than the training paradigm. To facilitate efficient deployment of generative ranking, we introduce GenRank, a novel generative architecture for ranking. We validate the effectiveness and efficiency of our solution through online A/B experiments. The results show that GenRank achieves significant improvements in user satisfaction with nearly equivalent computational resources compared to the existing production system.
Abstract:Analyzing Fast, Frequent, and Fine-grained (F$^3$) events presents a significant challenge in video analytics and multi-modal LLMs. Current methods struggle to identify events that satisfy all the F$^3$ criteria with high accuracy due to challenges such as motion blur and subtle visual discrepancies. To advance research in video understanding, we introduce F$^3$Set, a benchmark that consists of video datasets for precise F$^3$ event detection. Datasets in F$^3$Set are characterized by their extensive scale and comprehensive detail, usually encompassing over 1,000 event types with precise timestamps and supporting multi-level granularity. Currently, F$^3$Set contains several sports datasets, and this framework may be extended to other applications as well. We evaluated popular temporal action understanding methods on F$^3$Set, revealing substantial challenges for existing techniques. Additionally, we propose a new method, F$^3$ED, for F$^3$ event detections, achieving superior performance. The dataset, model, and benchmark code are available at https://github.com/F3Set/F3Set.