Abstract:Accurate reconstruction and relighting of glossy objects remain a longstanding challenge, as object shape, material properties, and illumination are inherently difficult to disentangle. Existing neural rendering approaches often rely on simplified BRDF models or parameterizations that couple diffuse and specular components, which restricts faithful material recovery and limits relighting fidelity. We propose a relightable framework that integrates a microfacet BRDF with the specular-glossiness parameterization into 2D Gaussian Splatting with deferred shading. This formulation enables more physically consistent material decomposition, while diffusion-based priors for surface normals and diffuse color guide early-stage optimization and mitigate ambiguity. A coarse-to-fine optimization of the environment map accelerates convergence and preserves high-dynamic-range specular reflections. Extensive experiments on complex, glossy scenes demonstrate that our method achieves high-quality geometry and material reconstruction, delivering substantially more realistic and consistent relighting under novel illumination compared to existing Gaussian splatting methods.
Abstract:Decoding the attended speaker in a multi-speaker environment from electroencephalography (EEG) has attracted growing interest in recent years, with neuro-steered hearing devices as a driver application. Current approaches typically rely on ground-truth labels of the attended speaker during training, necessitating calibration sessions for each user and each EEG set-up to achieve optimal performance. While unsupervised self-adaptive auditory attention decoding (AAD) for stimulus reconstruction has been developed to eliminate the need for labeled data, it suffers from an initialization bias that can compromise performance. Although an unbiased variant has been proposed to address this limitation, it introduces substantial computational complexity that scales with data size. This paper presents three computationally efficient alternatives that achieve comparable performance, but with a significantly lower and constant computational cost. The code for the proposed algorithms is available at https://github.com/YYao-42/Unsupervised_AAD.
Abstract:Misleading visualizations are a potent driver of misinformation on social media and the web. By violating chart design principles, they distort data and lead readers to draw inaccurate conclusions. Prior work has shown that both humans and multimodal large language models (MLLMs) are frequently deceived by such visualizations. Automatically detecting misleading visualizations and identifying the specific design rules they violate could help protect readers and reduce the spread of misinformation. However, the training and evaluation of AI models has been limited by the absence of large, diverse, and openly available datasets. In this work, we introduce Misviz, a benchmark of 2,604 real-world visualizations annotated with 12 types of misleaders. To support model training, we also release Misviz-synth, a synthetic dataset of 81,814 visualizations generated using Matplotlib and based on real-world data tables. We perform a comprehensive evaluation on both datasets using state-of-the-art MLLMs, rule-based systems, and fine-tuned classifiers. Our results reveal that the task remains highly challenging. We release Misviz, Misviz-synth, and the accompanying code.
Abstract:We introduce RGS-DR, a novel inverse rendering method for reconstructing and rendering glossy and reflective objects with support for flexible relighting and scene editing. Unlike existing methods (e.g., NeRF and 3D Gaussian Splatting), which struggle with view-dependent effects, RGS-DR utilizes a 2D Gaussian surfel representation to accurately estimate geometry and surface normals, an essential property for high-quality inverse rendering. Our approach explicitly models geometric and material properties through learnable primitives rasterized into a deferred shading pipeline, effectively reducing rendering artifacts and preserving sharp reflections. By employing a multi-level cube mipmap, RGS-DR accurately approximates environment lighting integrals, facilitating high-quality reconstruction and relighting. A residual pass with spherical-mipmap-based directional encoding further refines the appearance modeling. Experiments demonstrate that RGS-DR achieves high-quality reconstruction and rendering quality for shiny objects, often outperforming reconstruction-exclusive state-of-the-art methods incapable of relighting.
Abstract:Purpose: Automated Surgical Phase Recognition (SPR) uses Artificial Intelligence (AI) to segment the surgical workflow into its key events, functioning as a building block for efficient video review, surgical education as well as skill assessment. Previous research has focused on short and linear surgical procedures and has not explored if temporal context influences experts' ability to better classify surgical phases. This research addresses these gaps, focusing on Robot-Assisted Partial Nephrectomy (RAPN) as a highly non-linear procedure. Methods: Urologists of varying expertise were grouped and tasked to indicate the surgical phase for RAPN on both single frames and video snippets using a custom-made web platform. Participants reported their confidence levels and the visual landmarks used in their decision-making. AI architectures without and with temporal context as trained and benchmarked on the Cholec80 dataset were subsequently trained on this RAPN dataset. Results: Video snippets and presence of specific visual landmarks improved phase classification accuracy across all groups. Surgeons displayed high confidence in their classifications and outperformed novices, who struggled discriminating phases. The performance of the AI models is comparable to the surgeons in the survey, with improvements when temporal context was incorporated in both cases. Conclusion: SPR is an inherently complex task for expert surgeons and computer vision, where both perform equally well when given the same context. Performance increases when temporal information is provided. Surgical tools and organs form the key landmarks for human interpretation and are expected to shape the future of automated SPR.




Abstract:The capacity of Vision transformers (ViTs) to handle variable-sized inputs is often constrained by computational complexity and batch processing limitations. Consequently, ViTs are typically trained on small, fixed-size images obtained through downscaling or cropping. While reducing computational burden, these methods result in significant information loss, negatively affecting tasks like image aesthetic assessment. We introduce Charm, a novel tokenization approach that preserves Composition, High-resolution, Aspect Ratio, and Multi-scale information simultaneously. Charm prioritizes high-resolution details in specific regions while downscaling others, enabling shorter fixed-size input sequences for ViTs while incorporating essential information. Charm is designed to be compatible with pre-trained ViTs and their learned positional embeddings. By providing multiscale input and introducing variety to input tokens, Charm improves ViT performance and generalizability for image aesthetic assessment. We avoid cropping or changing the aspect ratio to further preserve information. Extensive experiments demonstrate significant performance improvements on various image aesthetic and quality assessment datasets (up to 8.1 %) using a lightweight ViT backbone. Code and pre-trained models are available at https://github.com/FBehrad/Charm.
Abstract:Object-centric representation learning has recently been successfully applied to real-world datasets. This success can be attributed to pretrained non-object-centric foundation models, whose features serve as reconstruction targets for slot attention. However, targets must remain frozen throughout the training, which sets an upper bound on the performance object-centric models can attain. Attempts to update the target encoder by bootstrapping result in large performance drops, which can be attributed to its lack of object-centric inductive biases, causing the object-centric model's encoder to drift away from representations useful as reconstruction targets. To address these limitations, we propose Object-CEntric Pretraining by Target Encoder BOotstrapping, a self-distillation setup for training object-centric models from scratch, on real-world data, for the first time ever. In OCEBO, the target encoder is updated as an exponential moving average of the object-centric model, thus explicitly being enriched with object-centric inductive biases introduced by slot attention while removing the upper bound on performance present in other models. We mitigate the slot collapse caused by random initialization of the target encoder by introducing a novel cross-view patch filtering approach that limits the supervision to sufficiently informative patches. When pretrained on 241k images from COCO, OCEBO achieves unsupervised object discovery performance comparable to that of object-centric models with frozen non-object-centric target encoders pretrained on hundreds of millions of images. The code and pretrained models are publicly available at https://github.com/djukicn/ocebo.
Abstract:Differentiable rendering enables efficient optimization by allowing gradients to be computed through the rendering process, facilitating 3D reconstruction, inverse rendering and neural scene representation learning. To ensure differentiability, existing solutions approximate or re-formulate traditional rendering operations using smooth, probabilistic proxies such as volumes or Gaussian primitives. Consequently, they struggle to preserve sharp edges due to the lack of explicit boundary definitions. We present a novel hybrid representation, B\'ezier Gaussian Triangle (BG-Triangle), that combines B\'ezier triangle-based vector graphics primitives with Gaussian-based probabilistic models, to maintain accurate shape modeling while conducting resolution-independent differentiable rendering. We present a robust and effective discontinuity-aware rendering technique to reduce uncertainties at object boundaries. We also employ an adaptive densification and pruning scheme for efficient training while reliably handling level-of-detail (LoD) variations. Experiments show that BG-Triangle achieves comparable rendering quality as 3DGS but with superior boundary preservation. More importantly, BG-Triangle uses a much smaller number of primitives than its alternatives, showcasing the benefits of vectorized graphics primitives and the potential to bridge the gap between classic and emerging representations.
Abstract:Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- where answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE (Diagnostic Audio Visual Evaluation), a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled challenges. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. The dataset is released: https://github.com/gorjanradevski/dave
Abstract:Personalized image generation via text prompts has great potential to improve daily life and professional work by facilitating the creation of customized visual content. The aim of image personalization is to create images based on a user-provided subject while maintaining both consistency of the subject and flexibility to accommodate various textual descriptions of that subject. However, current methods face challenges in ensuring fidelity to the text prompt while not overfitting to the training data. In this work, we introduce a novel training pipeline that incorporates an attractor to filter out distractions in training images, allowing the model to focus on learning an effective representation of the personalized subject. Moreover, current evaluation methods struggle due to the lack of a dedicated test set. The evaluation set-up typically relies on the training data of the personalization task to compute text-image and image-image similarity scores, which, while useful, tend to overestimate performance. Although human evaluations are commonly used as an alternative, they often suffer from bias and inconsistency. To address these issues, we curate a diverse and high-quality test set with well-designed prompts. With this new benchmark, automatic evaluation metrics can reliably assess model performance