Abstract:Recent breakthroughs in large language models (LLMs), particularly in reasoning capabilities, have propelled Retrieval-Augmented Generation (RAG) to unprecedented levels. By synergizing retrieval mechanisms with advanced reasoning, LLMs can now tackle increasingly complex problems. This paper presents a systematic review of the collaborative interplay between RAG and reasoning, clearly defining "reasoning" within the RAG context. It construct a comprehensive taxonomy encompassing multi-dimensional collaborative objectives, representative paradigms, and technical implementations, and analyze the bidirectional synergy methods. Additionally, we critically evaluate current limitations in RAG assessment, including the absence of intermediate supervision for multi-step reasoning and practical challenges related to cost-risk trade-offs. To bridge theory and practice, we provide practical guidelines tailored to diverse real-world applications. Finally, we identify promising research directions, such as graph-based knowledge integration, hybrid model collaboration, and RL-driven optimization. Overall, this work presents a theoretical framework and practical foundation to advance RAG systems in academia and industry, fostering the next generation of RAG solutions.
Abstract:Neural network quantum states (NQS), incorporating with variational Monte Carlo (VMC) method, are shown to be a promising way to investigate quantum many-body physics. Whereas vanilla VMC methods perform one gradient update per sample, we introduce a novel objective function with proximal optimization (PO) that enables multiple updates via reusing the mismatched samples. Our VMC-PO method keeps the advantage of the previous importance sampling gradient optimization algorithm [L. Yang, {\it et al}, Phys. Rev. Research {\bf 2}, 012039(R)(2020)] that efficiently uses sampled states. PO mitigates the numerical instabilities during network updates, which is similar to stochastic reconfiguration (SR) methods, but achieves an alternative and simpler implement with lower computational complexity. We investigate the performance of our VMC-PO algorithm for ground-state searching with a 1-dimensional transverse-field Ising model and 2-dimensional Heisenberg antiferromagnet on a square lattice, and demonstrate that the reached ground-state energies are comparable to state-of-the-art results.