Abstract:Chain-of-Thought (CoT) reasoning has advanced the capabilities and transparency of language models (LMs); however, reasoning chains can contain inaccurate statements that reduce performance and trustworthiness. To address this, we introduce a new self-correction framework that augments each reasoning step in a CoT with a latent variable indicating its veracity, enabling modeling of all possible truth assignments rather than assuming correctness throughout. To efficiently explore this expanded space, we introduce Search Corrector, a discrete search algorithm over boolean-valued veracity assignments. It efficiently performs otherwise intractable inference in the posterior distribution over veracity assignments by leveraging the LM's joint likelihood over veracity and the final answer as a proxy reward. This efficient inference-time correction method facilitates supervised fine-tuning of an Amortized Corrector by providing pseudo-labels for veracity. The Amortized Corrector generalizes self-correction, enabling accurate zero-shot veracity inference in novel contexts. Empirical results demonstrate that Search Corrector reliably identifies errors in logical (ProntoQA) and mathematical reasoning (GSM8K) benchmarks. The Amortized Corrector achieves comparable zero-shot accuracy and improves final answer accuracy by up to 25%.
Abstract:Probabilistic dependency graphs (PDGs) are a flexible class of probabilistic graphical models, subsuming Bayesian Networks and Factor Graphs. They can also capture inconsistent beliefs, and provide a way of measuring the degree of this inconsistency. We present the first tractable inference algorithm for PDGs with discrete variables, making the asymptotic complexity of PDG inference similar that of the graphical models they generalize. The key components are: (1) the observation that, in many cases, the distribution a PDG specifies can be formulated as a convex optimization problem (with exponential cone constraints), (2) a construction that allows us to express these problems compactly for PDGs of boundeed treewidth, (3) contributions to the theory of PDGs that justify the construction, and (4) an appeal to interior point methods that can solve such problems in polynomial time. We verify the correctness and complexity of our approach, and provide an implementation of it. We then evaluate our implementation, and demonstrate that it outperforms baseline approaches. Our code is available at http://github.com/orichardson/pdg-infer-uai.