Abstract:Multi-view clustering has been empirically shown to improve learning performance by leveraging the inherent complementary information across multiple views of data. However, in real-world scenarios, collecting strictly aligned views is challenging, and learning from both aligned and unaligned data becomes a more practical solution. Partially View-aligned Clustering aims to learn correspondences between misaligned view samples to better exploit the potential consistency and complementarity across views, including both aligned and unaligned data. However, most existing PVC methods fail to leverage unaligned data to capture the shared semantics among samples from the same cluster. Moreover, the inherent heterogeneity of multi-view data induces distributional shifts in representations, leading to inaccuracies in establishing meaningful correspondences between cross-view latent features and, consequently, impairing learning effectiveness. To address these challenges, we propose a Semantic MAtching contRasTive learning model (SMART) for PVC. The main idea of our approach is to alleviate the influence of cross-view distributional shifts, thereby facilitating semantic matching contrastive learning to fully exploit semantic relationships in both aligned and unaligned data. Extensive experiments on eight benchmark datasets demonstrate that our method consistently outperforms existing approaches on the PVC problem.
Abstract:Unsupervised cell type identification is crucial for uncovering and characterizing heterogeneous populations in single cell omics studies. Although a range of clustering methods have been developed, most focus exclusively on intrinsic cellular structure and ignore the pivotal role of cell-gene associations, which limits their ability to distinguish closely related cell types. To this end, we propose a Refinement Contrastive Learning framework (scRCL) that explicitly incorporates cell-gene interactions to derive more informative representations. Specifically, we introduce two contrastive distribution alignment components that reveal reliable intrinsic cellular structures by effectively exploiting cell-cell structural relationships. Additionally, we develop a refinement module that integrates gene-correlation structure learning to enhance cell embeddings by capturing underlying cell-gene associations. This module strengthens connections between cells and their associated genes, refining the representation learning to exploiting biologically meaningful relationships. Extensive experiments on several single-cell RNA-seq and spatial transcriptomics benchmark datasets demonstrate that our method consistently outperforms state-of-the-art baselines in cell-type identification accuracy. Moreover, downstream biological analyses confirm that the recovered cell populations exhibit coherent gene-expression signatures, further validating the biological relevance of our approach. The code is available at https://github.com/THPengL/scRCL.
Abstract:Remote-sensing (RS) image compression at extremely low bitrates has always been a challenging task in practical scenarios like edge device storage and narrow bandwidth transmission. Generative models including VAEs and GANs have been explored to compress RS images into extremely low-bitrate streams. However, these generative models struggle to reconstruct visually plausible images due to the highly ill-posed nature of extremely low-bitrate image compression. To this end, we propose an image compression framework that utilizes a pre-trained diffusion model with powerful natural image priors to achieve high-realism reconstructions. However, diffusion models tend to hallucinate small structures and textures due to the significant information loss at limited bitrates. Thus, we introduce vector maps as semantic and structural guidance and propose a novel image compression approach named Map-Assisted Generative Compression (MAGC). MAGC employs a two-stage pipeline to compress and decompress RS images at extremely low bitrates. The first stage maps an image into a latent representation, which is then further compressed in a VAE architecture to save bitrates and serves as implicit guidance in the subsequent diffusion process. The second stage conducts a conditional diffusion model to generate a visually pleasing and semantically accurate result using implicit guidance and explicit semantic guidance. Quantitative and qualitative comparisons show that our method outperforms standard codecs and other learning-based methods in terms of perceptual quality and semantic accuracy. The dataset and code will be publicly available at https://github.com/WHUyyx/MAGC.