Abstract:Physics-based simulation is essential for developing and evaluating robot manipulation policies, particularly in scenarios involving deformable objects and complex contact interactions. However, existing simulators often struggle to balance computational efficiency with numerical accuracy, especially when modeling deformable materials with frictional contact constraints. We introduce an efficient subspace representation for the Incremental Potential Contact (IPC) method, leveraging model reduction to decrease the number of degrees of freedom. Our approach decouples simulation complexity from the resolution of the input model by representing elasticity in a low-resolution subspace while maintaining collision constraints on an embedded high-resolution surface. Our barrier formulation ensures intersection-free trajectories and configurations regardless of material stiffness, time step size, or contact severity. We validate our simulator through quantitative experiments with a soft bubble gripper grasping and qualitative demonstrations of placing a plate on a dish rack. The results demonstrate our simulator's efficiency, physical accuracy, computational stability, and robust handling of frictional contact, making it well-suited for generating demonstration data and evaluating downstream robot training applications.
Abstract:Scanning electron microscopy (SEM) has been widely utilized in the field of materials science due to its significant advantages, such as large depth of field, wide field of view, and excellent stereoscopic imaging. However, at high magnification, the limited imaging range in SEM cannot cover all the possible inhomogeneous microstructures. In this research, we propose a novel approach for generating high-resolution SEM images across multiple scales, enabling a single image to capture physical dimensions at the centimeter level while preserving submicron-level details. We adopted the SEM imaging on the AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) as an example. SEM videos and image stitching are combined to fulfill this goal, and the video-extracted low-definition (LD) images are clarified by a well-trained denoising model. Furthermore, we segment the macroscopic image of the EHEA, and area of various microstructures are distinguished. Combining the segmentation results and hardness experiments, we found that the hardness is positively correlated with the content of body-centered cubic (BCC) phase, negatively correlated with the lamella width, and the relationship with the proportion of lamellar structures was not significant. Our work provides a feasible solution to generate macroscopic images based on SEMs for further analysis of the correlations between the microstructures and spatial distribution, and can be widely applied to other types of microscope.
Abstract:This article explores operator learning models that can deduce solutions to partial differential equations (PDEs) on arbitrary domains without requiring retraining. We introduce two innovative models rooted in boundary integral equations (BIEs): the Boundary Integral Type Deep Operator Network (BI-DeepONet) and the Boundary Integral Trigonometric Deep Operator Neural Network (BI-TDONet), which are crafted to address PDEs across diverse domains. Once fully trained, these BIE-based models adeptly predict the solutions of PDEs in any domain without the need for additional training. BI-TDONet notably enhances its performance by employing the singular value decomposition (SVD) of bounded linear operators, allowing for the efficient distribution of input functions across its modules. Furthermore, to tackle the issue of function sampling values that do not effectively capture oscillatory and impulse signal characteristics, trigonometric coefficients are utilized as both inputs and outputs in BI-TDONet. Our numerical experiments robustly support and confirm the efficacy of this theoretical framework.
Abstract:Traditional 3D garment creation is labor-intensive, involving sketching, modeling, UV mapping, and texturing, which are time-consuming and costly. Recent advances in diffusion-based generative models have enabled new possibilities for 3D garment generation from text prompts, images, and videos. However, existing methods either suffer from inconsistencies among multi-view images or require additional processes to separate cloth from the underlying human model. In this paper, we propose GarmentDreamer, a novel method that leverages 3D Gaussian Splatting (GS) as guidance to generate wearable, simulation-ready 3D garment meshes from text prompts. In contrast to using multi-view images directly predicted by generative models as guidance, our 3DGS guidance ensures consistent optimization in both garment deformation and texture synthesis. Our method introduces a novel garment augmentation module, guided by normal and RGBA information, and employs implicit Neural Texture Fields (NeTF) combined with Score Distillation Sampling (SDS) to generate diverse geometric and texture details. We validate the effectiveness of our approach through comprehensive qualitative and quantitative experiments, showcasing the superior performance of GarmentDreamer over state-of-the-art alternatives. Our project page is available at: https://xuan-li.github.io/GarmentDreamerDemo/.
Abstract:Vision Transformers (ViT) have marked a paradigm shift in computer vision, outperforming state-of-the-art models across diverse tasks. However, their practical deployment is hampered by high computational and memory demands. This study addresses the challenge by evaluating four primary model compression techniques: quantization, low-rank approximation, knowledge distillation, and pruning. We methodically analyze and compare the efficacy of these techniques and their combinations in optimizing ViTs for resource-constrained environments. Our comprehensive experimental evaluation demonstrates that these methods facilitate a balanced compromise between model accuracy and computational efficiency, paving the way for wider application in edge computing devices.
Abstract:As consumer Virtual Reality (VR) and Mixed Reality (MR) technologies gain momentum, there's a growing focus on the development of engagements with 3D virtual content. Unfortunately, traditional techniques for content creation, editing, and interaction within these virtual spaces are fraught with difficulties. They tend to be not only engineering-intensive but also require extensive expertise, which adds to the frustration and inefficiency in virtual object manipulation. Our proposed VR-GS system represents a leap forward in human-centered 3D content interaction, offering a seamless and intuitive user experience. By developing a physical dynamics-aware interactive Gaussian Splatting in a Virtual Reality setting, and constructing a highly efficient two-level embedding strategy alongside deformable body simulations, VR-GS ensures real-time execution with highly realistic dynamic responses. The components of our Virtual Reality system are designed for high efficiency and effectiveness, starting from detailed scene reconstruction and object segmentation, advancing through multi-view image in-painting, and extending to interactive physics-based editing. The system also incorporates real-time deformation embedding and dynamic shadow casting, ensuring a comprehensive and engaging virtual experience.Our project page is available at: https://yingjiang96.github.io/VR-GS/.
Abstract:We demonstrate the feasibility of integrating physics-based animations of solids and fluids with 3D Gaussian Splatting (3DGS) to create novel effects in virtual scenes reconstructed using 3DGS. Leveraging the coherence of the Gaussian splatting and position-based dynamics (PBD) in the underlying representation, we manage rendering, view synthesis, and the dynamics of solids and fluids in a cohesive manner. Similar to Gaussian shader, we enhance each Gaussian kernel with an added normal, aligning the kernel's orientation with the surface normal to refine the PBD simulation. This approach effectively eliminates spiky noises that arise from rotational deformation in solids. It also allows us to integrate physically based rendering to augment the dynamic surface reflections on fluids. Consequently, our framework is capable of realistically reproducing surface highlights on dynamic fluids and facilitating interactions between scene objects and fluids from new views. For more information, please visit our project page at \url{https://amysteriouscat.github.io/GaussianSplashing/}.
Abstract:Physics-informed neural networks (PINNs), rooted in deep learning, have emerged as a promising approach for solving partial differential equations (PDEs). By embedding the physical information described by PDEs into feedforward neural networks, PINNs are trained as surrogate models to approximate solutions without the need for label data. Nevertheless, even though PINNs have shown remarkable performance, they can face difficulties, especially when dealing with equations featuring rapidly changing solutions. These difficulties encompass slow convergence, susceptibility to becoming trapped in local minima, and reduced solution accuracy. To address these issues, we propose a binary structured physics-informed neural network (BsPINN) framework, which employs binary structured neural network (BsNN) as the neural network component. By leveraging a binary structure that reduces inter-neuron connections compared to fully connected neural networks, BsPINNs excel in capturing the local features of solutions more effectively and efficiently. These features are particularly crucial for learning the rapidly changing in the nature of solutions. In a series of numerical experiments solving Burgers equation, Euler equation, Helmholtz equation, and high-dimension Poisson equation, BsPINNs exhibit superior convergence speed and heightened accuracy compared to PINNs. From these experiments, we discover that BsPINNs resolve the issues caused by increased hidden layers in PINNs resulting in over-smoothing, and prevent the decline in accuracy due to non-smoothness of PDEs solutions.
Abstract:With the feature of multi-master bus access, nondestructive contention-based arbitration and flexible configuration, Controller Area Network (CAN) bus is applied into the control system of Wire Harness Assembly Machine (WHAM). To accomplish desired goal, the specific features of the CAN bus is analyzed by compared with other field buses and the functional performances in the CAN bus system of WHAM is discussed. Then the application layer planning of CAN bus for dynamic priority is presented. The critical issue for the use of CAN bus system in WHAM is the data transfer rate between different nodes. So processing efficient model is introduced to assist analyzing data transfer procedure. Through the model, it is convenient to verify the real time feature of the CAN bus system in WHAM.