Abstract:Recent advancements in 3D object generation using diffusion models have achieved remarkable success, but generating realistic 3D urban scenes remains challenging. Existing methods relying solely on 3D diffusion models tend to suffer a degradation in appearance details, while those utilizing only 2D diffusion models typically compromise camera controllability. To overcome this limitation, we propose ScenDi, a method for urban scene generation that integrates both 3D and 2D diffusion models. We first train a 3D latent diffusion model to generate 3D Gaussians, enabling the rendering of images at a relatively low resolution. To enable controllable synthesis, this 3DGS generation process can be optionally conditioned by specifying inputs such as 3d bounding boxes, road maps, or text prompts. Then, we train a 2D video diffusion model to enhance appearance details conditioned on rendered images from the 3D Gaussians. By leveraging the coarse 3D scene as guidance for 2D video diffusion, ScenDi generates desired scenes based on input conditions and successfully adheres to accurate camera trajectories. Experiments on two challenging real-world datasets, Waymo and KITTI-360, demonstrate the effectiveness of our approach.
Abstract:We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions (e.g., applied force and torque), producing high-quality, physically plausible video generation. By utilizing continuum mechanics-based simulations as a prior knowledge, our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions. Our framework begins by reconstructing a feed-forward 3D Gaussian from a single image through geometry optimization. This representation is then time-stepped using a differentiable Material Point Method (MPM) with continuum mechanics-based elastoplasticity models, which provides a strong foundation for realistic dynamics, albeit at a coarse level of detail. To enhance the geometry, appearance and ensure spatiotemporal consistency, we refine the initial simulation using a text-to-image (T2I) diffusion model with cross-frame attention, resulting in a physically plausible video that retains intricate details comparable to the input image. We conduct comprehensive qualitative and quantitative evaluations to validate the efficacy of our method. Our project page is available at: \url{https://supertan0204.github.io/physmotion_website/}.