Abstract:Supervised fine-tuning (SFT) of large language models (LLMs) for specialized tasks requires high-quality datasets, but manual curation is prohibitively expensive. Synthetic data generation offers scalability, but its effectiveness relies on complex, multi-stage workflows, integrating prompt engineering and model orchestration. Existing automated workflow methods face a cold start problem: they require labeled datasets for reward modeling, which is especially problematic for subjective, open-ended tasks with no objective ground truth. We introduce AutoSynth, a framework that automates workflow discovery and optimization without reference datasets by reframing the problem as a Monte Carlo Tree Search guided by a novel dataset-free hybrid reward. This reward enables meta-learning through two LLM-as-judge components: one evaluates sample quality using dynamically generated task-specific metrics, and another assesses workflow code and prompt quality. Experiments on subjective educational tasks show that while expert-designed workflows achieve higher human preference rates (96-99% win rates vs. AutoSynth's 40-51%), models trained on AutoSynth-generated data dramatically outperform baselines (40-51% vs. 2-5%) and match or surpass expert workflows on certain metrics, suggesting discovery of quality dimensions beyond human intuition. These results are achieved while reducing human effort from 5-7 hours to just 30 minutes (>90% reduction). AutoSynth tackles the cold start issue in data-centric AI, offering a scalable, cost-effective method for subjective LLM tasks. Code: https://github.com/bisz9918-maker/AutoSynth.




Abstract:The integration of large language models (LLMs) into education presents unprecedented opportunities for scalable personalized learning. However, standard LLMs often function as generic information providers, lacking alignment with fundamental pedagogical principles such as helpfulness, student-centered personalization, and creativity cultivation. To bridge this gap, we propose EduAlign, a novel framework designed to guide LLMs toward becoming more effective and responsible educational assistants. EduAlign consists of two main stages. In the first stage, we curate a dataset of 8k educational interactions and annotate them-both manually and automatically-along three key educational dimensions: Helpfulness, Personalization, and Creativity (HPC). These annotations are used to train HPC-RM, a multi-dimensional reward model capable of accurately scoring LLM outputs according to these educational principles. We further evaluate the consistency and reliability of this reward model. In the second stage, we leverage HPC-RM as a reward signal to fine-tune a pre-trained LLM using Group Relative Policy Optimization (GRPO) on a set of 2k diverse prompts. We then assess the pre- and post-finetuning models on both educational and general-domain benchmarks across the three HPC dimensions. Experimental results demonstrate that the fine-tuned model exhibits significantly improved alignment with pedagogical helpfulness, personalization, and creativity stimulation. This study presents a scalable and effective approach to aligning LLMs with nuanced and desirable educational traits, paving the way for the development of more engaging, pedagogically aligned AI tutors.