Abstract:Policy optimization for large language models often suffers from sparse reward signals in multi-step reasoning tasks. Critic-free methods like GRPO assign a single normalized outcome reward to all tokens, providing limited guidance for intermediate reasoning . While Process Reward Models (PRMs) offer dense feedback, they risk premature collapse when used alone, as early low-reward tokens can drive policies toward truncated outputs. We introduce Process Relative Policy Optimization (PRPO), which combines outcome reliability with process-level guidance in a critic-free framework. PRPO segments reasoning sequences based on semantic clues, normalizes PRM scores into token-level advantages, and aligns their distribution with outcome advantages through location-parameter shift. On MATH500, PRPO improves Qwen2.5-Math-1.5B accuracy from 61.2% to 64.4% over GRPO using only eight rollouts and no value network, demonstrating efficient fine-grained credit assignment within critic-free optimization. Code is available at: https://github.com/SchumiDing/srpocode
Abstract:Vision-Language Models (VLMs) show great promise for autonomous driving, but their suitability for safety-critical scenarios is largely unexplored, raising safety concerns. This issue arises from the lack of comprehensive benchmarks that assess both external environmental risks and in-cabin driving behavior safety simultaneously. To bridge this critical gap, we introduce DSBench, the first comprehensive Driving Safety Benchmark designed to assess a VLM's awareness of various safety risks in a unified manner. DSBench encompasses two major categories: external environmental risks and in-cabin driving behavior safety, divided into 10 key categories and a total of 28 sub-categories. This comprehensive evaluation covers a wide range of scenarios, ensuring a thorough assessment of VLMs' performance in safety-critical contexts. Extensive evaluations across various mainstream open-source and closed-source VLMs reveal significant performance degradation under complex safety-critical situations, highlighting urgent safety concerns. To address this, we constructed a large dataset of 98K instances focused on in-cabin and external safety scenarios, showing that fine-tuning on this dataset significantly enhances the safety performance of existing VLMs and paves the way for advancing autonomous driving technology. The benchmark toolkit, code, and model checkpoints will be publicly accessible.
Abstract:Articulated objects are prevalent in daily life and robotic manipulation tasks. However, compared to rigid objects, pose tracking for articulated objects remains an underexplored problem due to their inherent kinematic constraints. To address these challenges, this work proposes a novel point-pair-based pose tracking framework, termed \textbf{PPF-Tracker}. The proposed framework first performs quasi-canonicalization of point clouds in the SE(3) Lie group space, and then models articulated objects using Point Pair Features (PPF) to predict pose voting parameters by leveraging the invariance properties of SE(3). Finally, semantic information of joint axes is incorporated to impose unified kinematic constraints across all parts of the articulated object. PPF-Tracker is systematically evaluated on both synthetic datasets and real-world scenarios, demonstrating strong generalization across diverse and challenging environments. Experimental results highlight the effectiveness and robustness of PPF-Tracker in multi-frame pose tracking of articulated objects. We believe this work can foster advances in robotics, embodied intelligence, and augmented reality. Codes are available at https://github.com/mengxh20/PPFTracker.