Abstract:Scaling test-time compute brings substantial performance gains for large language models (LLMs). By sampling multiple answers and heuristically aggregate their answers (e.g., either through majority voting or using verifiers to rank the answers), one can achieve consistent performance gains in math domains. In this paper, we propose a new way to leverage such multiple sample set. We train a compact LLM, called Sample Set Aggregator (SSA), that takes a concatenated sequence of multiple samples and output the final answer, optimizing it for the answer accuracy with reinforcement learning. Experiments on multiple reasoning datasets show that SSA outperforms other test-time scaling methods such as reward model-based re-ranking. Our approach also shows a promising generalization ability, across sample set sizes, base model families and scales, and tasks. By separating LLMs to generate answers and LLMs to analyze and aggregate sampled answers, our approach can work with the outputs from premier black box models easily and efficiently.
Abstract:Knowledge editing techniques for large language models (LLMs) can inject knowledge that is later reproducible verbatim, but they fall short on propagating that knowledge: models cannot answer questions that require reasoning with the injected knowledge. We present a hypernetwork-based approach for knowledge propagation, named PropMEND, where we meta-learn how to modify gradients of a language modeling loss to encourage injected information to propagate. Our approach extends the meta-objective of MEND [29] so that gradient updates on knowledge are transformed to enable answering multi-hop questions involving that knowledge. We show improved performance on the RippleEdit dataset, showing almost 2x accuracy on challenging multi-hop questions whose answers are not explicitly stated in the injected fact. We further introduce a new dataset, Controlled RippleEdit, to evaluate the generalization of our hypernetwork, testing knowledge propagation along relations and entities unseen during hypernetwork training. PropMEND still outperforms existing approaches in unseen entity-relation pairs, yet the performance gap decreases substantially, suggesting future work in propagating knowledge to a wide range of relations.
Abstract:Podcasts have become daily companions for half a billion users. Given the enormous amount of podcast content available, highlights provide a valuable signal that helps viewers get the gist of an episode and decide if they want to invest in listening to it in its entirety. However, identifying highlights automatically is challenging due to the unstructured and long-form nature of the content. We introduce Rhapsody, a dataset of 13K podcast episodes paired with segment-level highlight scores derived from YouTube's 'most replayed' feature. We frame the podcast highlight detection as a segment-level binary classification task. We explore various baseline approaches, including zero-shot prompting of language models and lightweight finetuned language models using segment-level classification heads. Our experimental results indicate that even state-of-the-art language models like GPT-4o and Gemini struggle with this task, while models finetuned with in-domain data significantly outperform their zero-shot performance. The finetuned model benefits from leveraging both speech signal features and transcripts. These findings highlight the challenges for fine-grained information access in long-form spoken media.
Abstract:Humans are sensitive to suspicious coincidences when generalizing inductively over data, as they make assumptions as to how the data was sampled. This results in smaller, more specific hypotheses being favored over more general ones. For instance, when provided the set {Austin, Dallas, Houston}, one is more likely to think that this is sampled from "Texas Cities" over "US Cities" even though both are compatible. Suspicious coincidence is strongly connected to pragmatic reasoning, and can serve as a testbed to analyze systems on their sensitivity towards the communicative goals of the task (i.e., figuring out the true category underlying the data). In this paper, we analyze whether suspicious coincidence effects are reflected in language models' (LMs) behavior. We do so in the context of two domains: 1) the number game, where humans made judgments of whether a number (e.g., 4) fits a list of given numbers (e.g., 16, 32, 2); and 2) by extending the number game setup to prominent cities. For both domains, the data is compatible with multiple hypotheses and we study which hypothesis is most consistent with the models' behavior. On analyzing five models, we do not find strong evidence for suspicious coincidences in LMs' zero-shot behavior. However, when provided access to the hypotheses space via chain-of-thought or explicit prompting, LMs start to show an effect resembling suspicious coincidences, sometimes even showing effects consistent with humans. Our study suggests that inductive reasoning behavior in LMs can be enhanced with explicit access to the hypothesis landscape.
Abstract:We introduce Paralinguistic Speech Captions (ParaSpeechCaps), a large-scale dataset that annotates speech utterances with rich style captions. While rich abstract tags (e.g. guttural, nasal, pained) have been explored in small-scale human-annotated datasets, existing large-scale datasets only cover basic tags (e.g. low-pitched, slow, loud). We combine off-the-shelf text and speech embedders, classifiers and an audio language model to automatically scale rich tag annotations for the first time. ParaSpeechCaps covers a total of 59 style tags, including both speaker-level intrinsic tags and utterance-level situational tags. It consists of 342 hours of human-labelled data (PSC-Base) and 2427 hours of automatically annotated data (PSC-Scaled). We finetune Parler-TTS, an open-source style-prompted TTS model, on ParaSpeechCaps, and achieve improved style consistency (+7.9% Consistency MOS) and speech quality (+15.5% Naturalness MOS) over the best performing baseline that combines existing rich style tag datasets. We ablate several of our dataset design choices to lay the foundation for future work in this space. Our dataset, models and code are released at https://github.com/ajd12342/paraspeechcaps .
Abstract:Using language models to scalably approximate human preferences on text quality (LLM-as-a-judge) has become a standard practice applicable to many tasks. A judgment is often extracted from the judge's textual output alone, typically with greedy decoding. However, LLM judges naturally provide distributions over judgment tokens, inviting a breadth of inference methods for extracting fine-grained preferences. We find that taking the mean of the judgment distribution consistently outperforms taking the mode (i.e. greedy decoding) in all evaluation settings (i.e. pointwise, pairwise, and listwise). We further explore novel methods of deriving preferences from judgment distributions, and find that methods incorporating risk aversion often improve performance. Lastly, we analyze LLM-as-a-judge paired with chain-of-thought (CoT) prompting, showing that CoT can collapse the spread of the judgment distribution, often harming performance. Our findings suggest leveraging distributional output can improve LLM-as-a-judge, as opposed to using the text interface alone.
Abstract:In the fast-evolving field of information retrieval (IR), the integration of generative AI technologies such as large language models (LLMs) is transforming how users search for and interact with information. Recognizing this paradigm shift at the intersection of IR and generative AI (IR-GenAI), a visioning workshop supported by the Computing Community Consortium (CCC) was held in July 2024 to discuss the future of IR in the age of generative AI. This workshop convened 44 experts in information retrieval, natural language processing, human-computer interaction, and artificial intelligence from academia, industry, and government to explore how generative AI can enhance IR and vice versa, and to identify the major challenges and opportunities in this rapidly advancing field. This report contains a summary of discussions as potentially important research topics and contains a list of recommendations for academics, industry practitioners, institutions, evaluation campaigns, and funding agencies.
Abstract:Generating long sequences of tokens given a long-context input imposes a heavy computational burden for large language models (LLMs). One of the computational bottleneck comes from computing attention over a long sequence of input at each generation step. In this paper, we propose Recycled Attention, an inference-time method which alternates between full context attention and attention over a subset of input tokens. When performing partial attention, we recycle the attention pattern of a previous token that has performed full attention and attend only to the top K most attended tokens, reducing the cost of data movement and attention computation. Compared to previously proposed inference-time acceleration method which attends only to local context or tokens with high accumulative attention scores, our approach flexibly chooses tokens that are relevant to the current decoding step. We evaluate our methods on RULER, a suite of tasks designed to comprehensively evaluate long-context abilities, and long-context language modeling tasks. Applying our method to off-the-shelf LLMs achieves comparable speedup to baselines which only consider local context while improving the performance by 2x. We further explore two ideas to improve performance-efficiency trade-offs: (1) dynamically decide when to perform recycled or full attention step based on the query similarities and (2) continued pre-training the model with Recycled Attention.
Abstract:We investigate whether in-context examples, widely used in decoder-only language models (LLMs), can improve embedding model performance in retrieval tasks. Unlike in LLMs, naively prepending in-context examples (query-document pairs) to the target query at inference time does not work out of the box. We introduce a simple approach to enable retrievers to use in-context examples. Our approach, RARe, finetunes a pre-trained model with in-context examples whose query is semantically similar to the target query. This can be applied to adapt various base architectures (i.e., decoder-only language models, retriever models) and consistently achieves performance gains of up to +2.72% nDCG across various open-domain retrieval datasets (BeIR, RAR-b). In particular, we find RARe exhibits stronger out-of-domain generalization compared to models using queries without in-context examples, similar to what is seen for in-context learning in LLMs. We further provide analysis on the design choices of in-context example augmentation and lay the foundation for future work in this space.
Abstract:We examine diverging preferences in human-labeled preference datasets. We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes -- task underspecification, response style, refusals, and annotation errors. We find that the majority of disagreements are in opposition with standard reward modeling approaches, which are designed with the assumption that annotator disagreement is noise. We then explore how these findings impact two areas of LLM development: reward modeling and evaluation. In our experiments, we demonstrate how standard reward modeling methods, like the Bradley-Terry model, fail to differentiate whether a given preference judgment is the result of unanimous agreement among annotators or the majority opinion among diverging user preferences. We also find that these tendencies are also echoed by popular LLM-as-Judge evaluation methods, which consistently identify a winning response in cases of diverging preferences. These findings highlight remaining challenges in LLM evaluations, which are greatly influenced by divisive features like response style, and in developing pluralistically aligned LLMs. To address these issues, we develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.