Abstract:Large language model (LLM) based agents have shown great potential in following human instructions and automatically completing various tasks. To complete a task, the agent needs to decompose it into easily executed steps by planning. Existing studies mainly conduct the planning by inferring what steps should be executed next starting from the agent's initial state. However, this forward reasoning paradigm doesn't work well for complex tasks. We propose to study this issue in Minecraft, a virtual environment that simulates complex tasks based on real-world scenarios. We believe that the failure of forward reasoning is caused by the big perception gap between the agent's initial state and task goal. To this end, we leverage backward reasoning and make the planning starting from the terminal state, which can directly achieve the task goal in one step. Specifically, we design a BAckward Reasoning based agent (BAR). It is equipped with a recursive goal decomposition module, a state consistency maintaining module and a stage memory module to make robust, consistent, and efficient planning starting from the terminal state. Experimental results demonstrate the superiority of BAR over existing methods and the effectiveness of proposed modules.
Abstract:It is time-saving to build a reading assistant for customer service representations (CSRs) when reading user manuals, especially information-rich ones. Current solutions don't fit the online custom service scenarios well due to the lack of attention to user questions and possible responses. Hence, we propose to develop a time-saving and careful reading assistant for CSRs, named CARE. It can help the CSRs quickly find proper responses from the user manuals via explicit clue chains. Specifically, each of the clue chains is formed by inferring over the user manuals, starting from the question clue aligned with the user question and ending at a possible response. To overcome the shortage of supervised data, we adopt the self-supervised strategy for model learning. The offline experiment shows that CARE is efficient in automatically inferring accurate responses from the user manual. The online experiment further demonstrates the superiority of CARE to reduce CSRs' reading burden and keep high service quality, in particular with >35% decrease in time spent and keeping a >0.75 ICC score.
Abstract:Automatic extraction of procedural graphs from documents creates a low-cost way for users to easily understand a complex procedure by skimming visual graphs. Despite the progress in recent studies, it remains unanswered: whether the existing studies have well solved this task (Q1) and whether the emerging large language models (LLMs) can bring new opportunities to this task (Q2). To this end, we propose a new benchmark PAGED, equipped with a large high-quality dataset and standard evaluations. It investigates five state-of-the-art baselines, revealing that they fail to extract optimal procedural graphs well because of their heavy reliance on hand-written rules and limited available data. We further involve three advanced LLMs in PAGED and enhance them with a novel self-refine strategy. The results point out the advantages of LLMs in identifying textual elements and their gaps in building logical structures. We hope PAGED can serve as a major landmark for automatic procedural graph extraction and the investigations in PAGED can offer insights into the research on logic reasoning among non-sequential elements.
Abstract:The machine reading comprehension (MRC) of user manuals has huge potential in customer service. However,current methods have trouble answering complex questions. Therefore, we introduce the Knowing-how & Knowing-that task that requires the model to answer factoid-style, procedure-style, and inconsistent questions about user manuals. We resolve this task by jointly representing the steps and facts in a graph (TARA), which supports a unified inference of various questions. Towards a systematical benchmarking study, we design a heuristic method to automatically parse user manuals into TARAs and build an annotated dataset to test the model's ability in answering real-world questions. Empirical results demonstrate that representing user manuals as TARAs is a desired solution for the MRC of user manuals. An in-depth investigation of TARA further sheds light on the issues and broader impacts of future representations of user manuals. We hope our work can move the MRC of user manuals to a more complex and realistic stage.