Abstract:Large language models (LLMs) like GPT-4 show potential for scaling motivational interviewing (MI) in addiction care, but require systematic evaluation of therapeutic capabilities. We present a computational framework assessing user-perceived quality (UPQ) through expected and unexpected MI behaviors. Analyzing human therapist and GPT-4 MI sessions via human-AI collaboration, we developed predictive models integrating deep learning and explainable AI to identify 17 MI-consistent (MICO) and MI-inconsistent (MIIN) behavioral metrics. A customized chain-of-thought prompt improved GPT-4's MI performance, reducing inappropriate advice while enhancing reflections and empathy. Although GPT-4 remained marginally inferior to therapists overall, it demonstrated superior advice management capabilities. The model achieved measurable quality improvements through prompt engineering, yet showed limitations in addressing complex emotional nuances. This framework establishes a pathway for optimizing LLM-based therapeutic tools through targeted behavioral metric analysis and human-AI co-evaluation. Findings highlight both the scalability potential and current constraints of LLMs in clinical communication applications.
Abstract:Explainable Recommender Systems (XRS) aim to provide users with understandable reasons for the recommendations generated by these systems, representing a crucial research direction in artificial intelligence (AI). Recent research has increasingly focused on the algorithms, display, and evaluation methodologies of XRS. While current research and reviews primarily emphasize the algorithmic aspects, with fewer studies addressing the Human-Computer Interaction (HCI) layer of XRS. Additionally, existing reviews lack a unified taxonomy for XRS and there is insufficient attention given to the emerging area of short video recommendations. In this study, we synthesize existing literature and surveys on XRS, presenting a unified framework for its research and development. The main contributions are as follows: 1) We adopt a lifecycle perspective to systematically summarize the technologies and methods used in XRS, addressing challenges posed by the diversity and complexity of algorithmic models and explanation techniques. 2) For the first time, we highlight the application of multimedia, particularly video-based explanations, along with its potential, technical pathways, and challenges in XRS. 3) We provide a structured overview of evaluation methods from both qualitative and quantitative dimensions. These findings provide valuable insights for the systematic design, progress, and testing of XRS.
Abstract:Through experimental studies, however, we observed the instability of final predicted quality scores, which change significantly over different viewpoint settings. Inspired by the "wooden barrel theory", given the default content-independent viewpoints of existing projection-related PCQA approaches, this paper presents a novel content-aware viewpoint generation network (CAVGN) to learn better viewpoints by taking the distribution of geometric and attribute features of degraded point clouds into consideration. Firstly, the proposed CAVGN extracts multi-scale geometric and texture features of the entire input point cloud, respectively. Then, for each default content-independent viewpoint, the extracted geometric and texture features are refined to focus on its corresponding visible part of the input point cloud. Finally, the refined geometric and texture features are concatenated to generate an optimized viewpoint. To train the proposed CAVGN, we present a self-supervised viewpoint ranking network (SSVRN) to select the viewpoint with the worst quality projected image to construct a default-optimized viewpoint dataset, which consists of thousands of paired default viewpoints and corresponding optimized viewpoints. Experimental results show that the projection-related PCQA methods can achieve higher performance using the viewpoints generated by the proposed CAVGN.
Abstract:Geometry quality assessment (GQA) of colorless point clouds is crucial for evaluating the performance of emerging point cloud-based solutions (e.g., watermarking, compression, and 3-Dimensional (3D) reconstruction). Unfortunately, existing objective GQA approaches are traditional full-reference metrics, whereas state-of-the-art learning-based point cloud quality assessment (PCQA) methods target both color and geometry distortions, neither of which are qualified for the no-reference GQA task. In addition, the lack of large-scale GQA datasets with subjective scores, which are always imprecise, biased, and inconsistent, also hinders the development of learning-based GQA metrics. Driven by these limitations, this paper proposes a no-reference geometry-only quality assessment approach based on list-wise rank learning, termed LRL-GQA, which comprises of a geometry quality assessment network (GQANet) and a list-wise rank learning network (LRLNet). The proposed LRL-GQA formulates the no-reference GQA as a list-wise rank problem, with the objective of directly optimizing the entire quality ordering. Specifically, a large dataset containing a variety of geometry-only distortions is constructed first, named LRL dataset, in which each sample is label-free but coupled with quality ranking information. Then, the GQANet is designed to capture intrinsic multi-scale patch-wise geometric features in order to predict a quality index for each point cloud. After that, the LRLNet leverages the LRL dataset and a likelihood loss to train the GQANet and ranks the input list of degraded point clouds according to their distortion levels. In addition, the pre-trained GQANet can be fine-tuned further to obtain absolute quality scores. Experimental results demonstrate the superior performance of the proposed no-reference LRL-GQA method compared with existing full-reference GQA metrics.
Abstract:This paper describes the zero-shot spontaneous style TTS system for the ISCSLP 2024 Conversational Voice Clone Challenge (CoVoC). We propose a LLaMA-based codec language model with a delay pattern to achieve spontaneous style voice cloning. To improve speech intelligibility, we introduce the Classifier-Free Guidance (CFG) strategy in the language model to strengthen conditional guidance on token prediction. To generate high-quality utterances, we adopt effective data preprocessing operations and fine-tune our model with selected high-quality spontaneous speech data. The official evaluations in the CoVoC constrained track show that our system achieves the best speech naturalness MOS of 3.80 and obtains considerable speech quality and speaker similarity results.
Abstract:With the support of Virtual Reality (VR) and Augmented Reality (AR) technologies, the 3D virtual eyeglasses try-on application is well on its way to becoming a new trending solution that offers a "try on" option to select the perfect pair of eyeglasses at the comfort of your own home. Reconstructing eyeglasses frames from a single image with traditional depth and image-based methods is extremely difficult due to their unique characteristics such as lack of sufficient texture features, thin elements, and severe self-occlusions. In this paper, we propose the first mesh deformation-based reconstruction framework for recovering high-precision 3D full-frame eyeglasses models from a single RGB image, leveraging prior and domain-specific knowledge. Specifically, based on the construction of a synthetic eyeglasses frame dataset, we first define a class-specific eyeglasses frame template with pre-defined keypoints. Then, given an input eyeglasses frame image with thin structure and few texture features, we design a keypoint detector and refiner to detect predefined keypoints in a coarse-to-fine manner to estimate the camera pose accurately. After that, using differentiable rendering, we propose a novel optimization approach for producing correct geometry by progressively performing free-form deformation (FFD) on the template mesh. We define a series of loss functions to enforce consistency between the rendered result and the corresponding RGB input, utilizing constraints from inherent structure, silhouettes, keypoints, per-pixel shading information, and so on. Experimental results on both the synthetic dataset and real images demonstrate the effectiveness of the proposed algorithm.
Abstract:Two forms of imbalances are commonly observed in point cloud semantic segmentation datasets: (1) category imbalances, where certain objects are more prevalent than others; and (2) size imbalances, where certain objects occupy more points than others. Because of this, the majority of categories and large objects are favored in the existing evaluation metrics. This paper suggests fine-grained mIoU and mAcc for a more thorough assessment of point cloud segmentation algorithms in order to address these issues. Richer statistical information is provided for models and datasets by these fine-grained metrics, which also lessen the bias of current semantic segmentation metrics towards large objects. The proposed metrics are used to train and assess various semantic segmentation algorithms on three distinct indoor and outdoor semantic segmentation datasets.
Abstract:Existing interactive point cloud segmentation approaches primarily focus on the object segmentation, which aim to determine which points belong to the object of interest guided by user interactions. This paper concentrates on an unexplored yet meaningful task, i.e., interactive point cloud semantic segmentation, which assigns high-quality semantic labels to all points in a scene with user corrective clicks. Concretely, we presents the first interactive framework for point cloud semantic segmentation, named InterPCSeg, which seamlessly integrates with off-the-shelf semantic segmentation networks without offline re-training, enabling it to run in an on-the-fly manner. To achieve online refinement, we treat user interactions as sparse training examples during the test-time. To address the instability caused by the sparse supervision, we design a stabilization energy to regulate the test-time training process. For objective and reproducible evaluation, we develop an interaction simulation scheme tailored for the interactive point cloud semantic segmentation task. We evaluate our framework on the S3DIS and ScanNet datasets with off-the-shelf segmentation networks, incorporating interactions from both the proposed interaction simulator and real users. Quantitative and qualitative experimental results demonstrate the efficacy of our framework in refining the semantic segmentation results with user interactions. The source code will be publicly available.
Abstract:The emergence of text-driven motion synthesis technique provides animators with great potential to create efficiently. However, in most cases, textual expressions only contain general and qualitative motion descriptions, while lack fine depiction and sufficient intensity, leading to the synthesized motions that either (a) semantically compliant but uncontrollable over specific pose details, or (b) even deviates from the provided descriptions, bringing animators with undesired cases. In this paper, we propose DiffKFC, a conditional diffusion model for text-driven motion synthesis with keyframes collaborated. Different from plain text-driven designs, full interaction among texts, keyframes and the rest diffused frames are conducted at training, enabling realistic generation under efficient, collaborative dual-level control: coarse guidance at semantic level, with only few keyframes for direct and fine-grained depiction down to body posture level, to satisfy animator requirements without tedious labor. Specifically, we customize efficient Dilated Mask Attention modules, where only partial valid tokens participate in local-to-global attention, indicated by the dilated keyframe mask. For user flexibility, DiffKFC supports adjustment on importance of fine-grained keyframe control. Experimental results show that our model achieves state-of-the-art performance on text-to-motion datasets HumanML3D and KIT.
Abstract:Let us rethink the real-world scenarios that require human motion prediction techniques, such as human-robot collaboration. Current works simplify the task of predicting human motions into a one-off process of forecasting a short future sequence (usually no longer than 1 second) based on a historical observed one. However, such simplification may fail to meet practical needs due to the neglect of the fact that motion prediction in real applications is not an isolated ``observe then predict'' unit, but a consecutive process composed of many rounds of such unit, semi-overlapped along the entire sequence. As time goes on, the predicted part of previous round has its corresponding ground truth observable in the new round, but their deviation in-between is neither exploited nor able to be captured by existing isolated learning fashion. In this paper, we propose DeFeeNet, a simple yet effective network that can be added on existing one-off prediction models to realize deviation perception and feedback when applied to consecutive motion prediction task. At each prediction round, the deviation generated by previous unit is first encoded by our DeFeeNet, and then incorporated into the existing predictor to enable a deviation-aware prediction manner, which, for the first time, allows for information transmit across adjacent prediction units. We design two versions of DeFeeNet as MLP-based and GRU-based, respectively. On Human3.6M and more complicated BABEL, experimental results indicate that our proposed network improves consecutive human motion prediction performance regardless of the basic model.