Abstract:Causal inference has emerged as a promising approach to mitigate long-tail classification by handling the biases introduced by class imbalance. However, along with the change of advanced backbone models from Convolutional Neural Networks (CNNs) to Visual Transformers (ViT), existing causal models may not achieve an expected performance gain. This paper investigates the influence of existing causal models on CNNs and ViT variants, highlighting that ViT's global feature representation makes it hard for causal methods to model associations between fine-grained features and predictions, which leads to difficulties in classifying tail classes with similar visual appearance. To address these issues, this paper proposes TSCNet, a two-stage causal modeling method to discover fine-grained causal associations through multi-scale causal interventions. Specifically, in the hierarchical causal representation learning stage (HCRL), it decouples the background and objects, applying backdoor interventions at both the patch and feature level to prevent model from using class-irrelevant areas to infer labels which enhances fine-grained causal representation. In the counterfactual logits bias calibration stage (CLBC), it refines the optimization of model's decision boundary by adaptive constructing counterfactual balanced data distribution to remove the spurious associations in the logits caused by data distribution. Extensive experiments conducted on various long-tail benchmarks demonstrate that the proposed TSCNet can eliminate multiple biases introduced by data imbalance, which outperforms existing methods.
Abstract:Cross-modal alignment is an effective approach to improving visual classification. Existing studies typically enforce a one-step mapping that uses deep neural networks to project the visual features to mimic the distribution of textual features. However, they typically face difficulties in finding such a projection due to the two modalities in both the distribution of class-wise samples and the range of their feature values. To address this issue, this paper proposes a novel Semantic-Space-Intervened Diffusive Alignment method, termed SeDA, models a semantic space as a bridge in the visual-to-textual projection, considering both types of features share the same class-level information in classification. More importantly, a bi-stage diffusion framework is developed to enable the progressive alignment between the two modalities. Specifically, SeDA first employs a Diffusion-Controlled Semantic Learner to model the semantic features space of visual features by constraining the interactive features of the diffusion model and the category centers of visual features. In the later stage of SeDA, the Diffusion-Controlled Semantic Translator focuses on learning the distribution of textual features from the semantic space. Meanwhile, the Progressive Feature Interaction Network introduces stepwise feature interactions at each alignment step, progressively integrating textual information into mapped features. Experimental results show that SeDA achieves stronger cross-modal feature alignment, leading to superior performance over existing methods across multiple scenarios.