Max
Abstract:This paper reports on the NTIRE 2023 Quality Assessment of Video Enhancement Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2023. This challenge is to address a major challenge in the field of video processing, namely, video quality assessment (VQA) for enhanced videos. The challenge uses the VQA Dataset for Perceptual Video Enhancement (VDPVE), which has a total of 1211 enhanced videos, including 600 videos with color, brightness, and contrast enhancements, 310 videos with deblurring, and 301 deshaked videos. The challenge has a total of 167 registered participants. 61 participating teams submitted their prediction results during the development phase, with a total of 3168 submissions. A total of 176 submissions were submitted by 37 participating teams during the final testing phase. Finally, 19 participating teams submitted their models and fact sheets, and detailed the methods they used. Some methods have achieved better results than baseline methods, and the winning methods have demonstrated superior prediction performance.
Abstract:Digital humans have witnessed extensive applications in various domains, necessitating related quality assessment studies. However, there is a lack of comprehensive digital human quality assessment (DHQA) databases. To address this gap, we propose SJTU-H3D, a subjective quality assessment database specifically designed for full-body digital humans. It comprises 40 high-quality reference digital humans and 1,120 labeled distorted counterparts generated with seven types of distortions. The SJTU-H3D database can serve as a benchmark for DHQA research, allowing evaluation and refinement of processing algorithms. Further, we propose a zero-shot DHQA approach that focuses on no-reference (NR) scenarios to ensure generalization capabilities while mitigating database bias. Our method leverages semantic and distortion features extracted from projections, as well as geometry features derived from the mesh structure of digital humans. Specifically, we employ the Contrastive Language-Image Pre-training (CLIP) model to measure semantic affinity and incorporate the Naturalness Image Quality Evaluator (NIQE) model to capture low-level distortion information. Additionally, we utilize dihedral angles as geometry descriptors to extract mesh features. By aggregating these measures, we introduce the Digital Human Quality Index (DHQI), which demonstrates significant improvements in zero-shot performance. The DHQI can also serve as a robust baseline for DHQA tasks, facilitating advancements in the field. The database and the code are available at https://github.com/zzc-1998/SJTU-H3D.
Abstract:Affordance-Centric Question-driven Task Completion (AQTC) has been proposed to acquire knowledge from videos to furnish users with comprehensive and systematic instructions. However, existing methods have hitherto neglected the necessity of aligning spatiotemporal visual and linguistic signals, as well as the crucial interactional information between humans and objects. To tackle these limitations, we propose to combine large-scale pre-trained vision-language and video-language models, which serve to contribute stable and reliable multimodal data and facilitate effective spatiotemporal visual-textual alignment. Additionally, a novel hand-object-interaction (HOI) aggregation module is proposed which aids in capturing human-object interaction information, thereby further augmenting the capacity to understand the presented scenario. Our method achieved first place in the CVPR'2023 AQTC Challenge, with a Recall@1 score of 78.7\%. The code is available at https://github.com/tomchen-ctj/CVPR23-LOVEU-AQTC.
Abstract:With the rapid advancements of the text-to-image generative model, AI-generated images (AGIs) have been widely applied to entertainment, education, social media, etc. However, considering the large quality variance among different AGIs, there is an urgent need for quality models that are consistent with human subjective ratings. To address this issue, we extensively consider various popular AGI models, generated AGI through different prompts and model parameters, and collected subjective scores at the perceptual quality and text-to-image alignment, thus building the most comprehensive AGI subjective quality database AGIQA-3K so far. Furthermore, we conduct a benchmark experiment on this database to evaluate the consistency between the current Image Quality Assessment (IQA) model and human perception, while proposing StairReward that significantly improves the assessment performance of subjective text-to-image alignment. We believe that the fine-grained subjective scores in AGIQA-3K will inspire subsequent AGI quality models to fit human subjective perception mechanisms at both perception and alignment levels and to optimize the generation result of future AGI models. The database is released on https://github.com/lcysyzxdxc/AGIQA-3k-Database.
Abstract:Nowadays, most 3D model quality assessment (3DQA) methods have been aimed at improving performance. However, little attention has been paid to the computational cost and inference time required for practical applications. Model-based 3DQA methods extract features directly from the 3D models, which are characterized by their high degree of complexity. As a result, many researchers are inclined towards utilizing projection-based 3DQA methods. Nevertheless, previous projection-based 3DQA methods directly extract features from multi-projections to ensure quality prediction accuracy, which calls for more resource consumption and inevitably leads to inefficiency. Thus in this paper, we address this challenge by proposing a no-reference (NR) projection-based \textit{\underline{G}rid \underline{M}ini-patch \underline{S}ampling \underline{3D} Model \underline{Q}uality \underline{A}ssessment (GMS-3DQA)} method. The projection images are rendered from six perpendicular viewpoints of the 3D model to cover sufficient quality information. To reduce redundancy and inference resources, we propose a multi-projection grid mini-patch sampling strategy (MP-GMS), which samples grid mini-patches from the multi-projections and forms the sampled grid mini-patches into one quality mini-patch map (QMM). The Swin-Transformer tiny backbone is then used to extract quality-aware features from the QMMs. The experimental results show that the proposed GMS-3DQA outperforms existing state-of-the-art NR-3DQA methods on the point cloud quality assessment databases. The efficiency analysis reveals that the proposed GMS-3DQA requires far less computational resources and inference time than other 3DQA competitors. The code will be available at https://github.com/zzc-1998/GMS-3DQA.
Abstract:We study the problem of learning optimal policy from a set of discrete treatment options using observational data. We propose a piecewise linear neural network model that can balance strong prescriptive performance and interpretability, which we refer to as the prescriptive ReLU network, or P-ReLU. We show analytically that this model (i) partitions the input space into disjoint polyhedra, where all instances that belong to the same partition receive the same treatment, and (ii) can be converted into an equivalent prescriptive tree with hyperplane splits for interpretability. We demonstrate the flexibility of the P-ReLU network as constraints can be easily incorporated with minor modifications to the architecture. Through experiments, we validate the superior prescriptive accuracy of P-ReLU against competing benchmarks. Lastly, we present examples of interpretable prescriptive trees extracted from trained P-ReLUs using a real-world dataset, for both the unconstrained and constrained scenarios.
Abstract:Denoising Diffusion Probabilistic Models (DDPM) have shown remarkable efficacy in the synthesis of high-quality images. However, their inference process characteristically requires numerous, potentially hundreds, of iterative steps, which could lead to the problem of exposure bias due to the accumulation of prediction errors over iterations. Previous work has attempted to mitigate this issue by perturbing inputs during training, which consequently mandates the retraining of the DDPM. In this work, we conduct a systematic study of exposure bias in diffusion models and, intriguingly, we find that the exposure bias could be alleviated with a new sampling method, without retraining the model. We empirically and theoretically show that, during inference, for each backward time step $t$ and corresponding state $\hat{x}_t$, there might exist another time step $t_s$ which exhibits superior coupling with $\hat{x}_t$. Based on this finding, we introduce an inference method named Time-Shift Sampler. Our framework can be seamlessly integrated with existing sampling algorithms, such as DDIM or DDPM, inducing merely minimal additional computations. Experimental results show that our proposed framework can effectively enhance the quality of images generated by existing sampling algorithms.
Abstract:User-generated content (UGC) live videos are often bothered by various distortions during capture procedures and thus exhibit diverse visual qualities. Such source videos are further compressed and transcoded by media server providers before being distributed to end-users. Because of the flourishing of UGC live videos, effective video quality assessment (VQA) tools are needed to monitor and perceptually optimize live streaming videos in the distributing process. In this paper, we address \textbf{UGC Live VQA} problems by constructing a first-of-a-kind subjective UGC Live VQA database and developing an effective evaluation tool. Concretely, 418 source UGC videos are collected in real live streaming scenarios and 3,762 compressed ones at different bit rates are generated for the subsequent subjective VQA experiments. Based on the built database, we develop a \underline{M}ulti-\underline{D}imensional \underline{VQA} (\textbf{MD-VQA}) evaluator to measure the visual quality of UGC live videos from semantic, distortion, and motion aspects respectively. Extensive experimental results show that MD-VQA achieves state-of-the-art performance on both our UGC Live VQA database and existing compressed UGC VQA databases.
Abstract:\underline{AI} \underline{G}enerated \underline{C}ontent (\textbf{AIGC}) has gained widespread attention with the increasing efficiency of deep learning in content creation. AIGC, created with the assistance of artificial intelligence technology, includes various forms of content, among which the AI-generated images (AGIs) have brought significant impact to society and have been applied to various fields such as entertainment, education, social media, etc. However, due to hardware limitations and technical proficiency, the quality of AIGC images (AGIs) varies, necessitating refinement and filtering before practical use. Consequently, there is an urgent need for developing objective models to assess the quality of AGIs. Unfortunately, no research has been carried out to investigate the perceptual quality assessment for AGIs specifically. Therefore, in this paper, we first discuss the major evaluation aspects such as technical issues, AI artifacts, unnaturalness, discrepancy, and aesthetics for AGI quality assessment. Then we present the first perceptual AGI quality assessment database, AGIQA-1K, which consists of 1,080 AGIs generated from diffusion models. A well-organized subjective experiment is followed to collect the quality labels of the AGIs. Finally, we conduct a benchmark experiment to evaluate the performance of current image quality assessment (IQA) models.
Abstract:Recently, many video enhancement methods have been proposed to improve video quality from different aspects such as color, brightness, contrast, and stability. Therefore, how to evaluate the quality of the enhanced video in a way consistent with human visual perception is an important research topic. However, most video quality assessment methods mainly calculate video quality by estimating the distortion degrees of videos from an overall perspective. Few researchers have specifically proposed a video quality assessment method for video enhancement, and there is also no comprehensive video quality assessment dataset available in public. Therefore, we construct a Video quality assessment dataset for Perceptual Video Enhancement (VDPVE) in this paper. The VDPVE has 1211 videos with different enhancements, which can be divided into three sub-datasets: the first sub-dataset has 600 videos with color, brightness, and contrast enhancements; the second sub-dataset has 310 videos with deblurring; and the third sub-dataset has 301 deshaked videos. We invited 21 subjects (20 valid subjects) to rate all enhanced videos in the VDPVE. After normalizing and averaging the subjective opinion scores, the mean opinion score of each video can be obtained. Furthermore, we split the VDPVE into a training set, a validation set, and a test set, and verify the performance of several state-of-the-art video quality assessment methods on the test set of the VDPVE.