Abstract:Rydberg atom-based antennas exploit the quantum properties of highly excited Rydberg atoms, providing unique advantages over classical antennas, such as high sensitivity, broad frequency range, and compact size. Despite the increasing interests in their applications in antenna and communication engineering, two key properties, involving the lack of polarization multiplexing and isotropic reception without mutual coupling, remain unexplored in the analysis of Rydberg atom-based spatial multiplexing, i.e., multiple-input and multiple-output (MIMO), communications. Generally, the design considerations for any antenna, even for atomic ones, can be extracted to factors such as radiation patterns, efficiency, and polarization, allowing them to be seamlessly integrated into existing system models. In this letter, we extract the antenna properties from relevant quantum characteristics, enabling electromagnetic modeling and capacity analysis of Rydberg MIMO systems in both far-field and near-field scenarios. By employing ray-based method for far-field analysis and dyadic Green's function for near-field calculation, our results indicate that Rydberg atom-based antenna arrays offer specific advantages over classical dipole-type arrays in single-polarization MIMO communications.
Abstract:Holographic multiple-input and multiple-output (MIMO) communications introduce innovative antenna array configurations, such as dense arrays and volumetric arrays, which offer notable advantages over conventional planar arrays with half-wavelength element spacing. However, accurately assessing the performance of these new holographic MIMO systems necessitates careful consideration of channel matrix normalization, as it is influenced by array gain, which, in turn, depends on the array topology. Traditional normalization methods may be insufficient for assessing these advanced array topologies, potentially resulting in misleading or inaccurate evaluations. In this study, we propose electromagnetic normalization approaches for the channel matrix that accommodate arbitrary array topologies, drawing on the array gains from analytical, physical, and full-wave methods. Additionally, we introduce a normalization method for near-field MIMO channels based on a rigorous dyadic Green's function approach, which accounts for potential losses of gain at near field. Finally, we perform capacity analyses under quasi-static, ergodic, and near-field conditions, through adopting the proposed normalization techniques. Our findings indicate that channel matrix normalization should reflect the realized gains of the antenna array in target directions. Failing to accurately normalize the channel matrix can result in errors when evaluating the performance limits and benefits of unconventional holographic array topologies, potentially compromising the optimal design of holographic MIMO systems.
Abstract:Hannan Limitation successfully links the directivity characteristics of 2D arrays with the aperture gain limit, providing the radiation efficiency upper limit for large 2D planar antenna arrays. This demonstrates the inevitable radiation efficiency degradation caused by mutual coupling effects between array elements. However, this limitation is derived based on the assumption of infinitely large 2D arrays, which means that it is not an accurate law for small-size arrays. In this paper, we extend this theory and propose an estimation formula for the radiation efficiency upper limit of finite-sized 2D arrays. Furthermore, we analyze a 3D array structure consisting of two parallel 2D arrays. Specifically, we provide evaluation formulas for the mutual coupling strengths for both infinite and finite size arrays and derive the fundamental efficiency limit of 3D arrays. Moreover, based on the established gain limit of antenna arrays with fixed aperture sizes, we derive the achievable gain limit of finite size 3D arrays. Besides the performance analyses, we also investigate the spatial radiation characteristics of the considered 3D array structure, offering a feasible region for 2D phase settings under a given energy attenuation threshold. Through simulations, we demonstrate the effectiveness of our proposed theories and gain advantages of 3D arrays for better spatial coverage under various scenarios.
Abstract:Holographic multiple-input multiple-output (HMIMO) utilizes a compact antenna array to form a nearly continuous aperture, thereby enhancing higher capacity and more flexible configurations compared with conventional MIMO systems, making it attractive in current scientific research. Key questions naturally arise regarding the potential of HMIMO to surpass Shannon's theoretical limits and how far its capabilities can be extended. However, the traditional Shannon information theory falls short in addressing these inquiries because it only focuses on the information itself while neglecting the underlying carrier, electromagnetic (EM) waves, and environmental interactions. To fill up the gap between the theoretical analysis and the practical application for HMIMO systems, we introduce electromagnetic information theory (EIT) in this paper. This paper begins by laying the foundation for HMIMO-oriented EIT, encompassing EM wave equations and communication regions. In the context of HMIMO systems, the resultant physical limitations are presented, involving Chu's limit, Harrington's limit, Hannan's limit, and the evaluation of coupling effects. Field sampling and HMIMO-assisted oversampling are also discussed to guide the optimal HMIMO design within the EIT framework. To comprehensively depict the EM-compliant propagation process, we present the approximate and exact channel modeling approaches in near-/far-field zones. Furthermore, we discuss both traditional Shannon's information theory, employing the probabilistic method, and Kolmogorov information theory, utilizing the functional analysis, for HMIMO-oriented EIT systems.
Abstract:It is well known that there is inherent radiation pattern distortion for the commercial base station antenna array, which usually needs three antenna sectors to cover the whole space. To eliminate pattern distortion and further enhance beamforming performance, we propose an electromagnetic hybrid beamforming (EHB) scheme based on a three-dimensional (3D) superdirective holographic antenna array. Specifically, EHB consists of antenna excitation current vectors (analog beamforming) and digital precoding matrices, where the implementation of analog beamforming involves the real-time adjustment of the radiation pattern to adapt it to the dynamic wireless environment. Meanwhile, the digital beamforming is optimized based on the channel characteristics of analog beamforming to further improve the achievable rate of communication systems. An electromagnetic channel model incorporating array radiation patterns and the mutual coupling effect is also developed to evaluate the benefits of our proposed scheme. Simulation results demonstrate that our proposed EHB scheme with a 3D holographic array achieves a relatively flat superdirective beamforming gain and allows for programmable focusing directions throughout the entire spatial domain. Furthermore, they also verify that the proposed scheme achieves a sum rate gain of over 150% compared to traditional beamforming algorithms.
Abstract:This paper studies the exploitation of triple polarization (TP) for multi-user (MU) holographic multiple-input multiple-output surface (HMIMOS) wireless communication systems, aiming at capacity boosting without enlarging the antenna array size. We specifically consider that both the transmitter and receiver are equipped with an HMIMOS comprising compact sub-wavelength TP patch antennas. To characterize TP MUHMIMOS systems, a TP near-field channel model is proposed using the dyadic Green's function, whose characteristics are leveraged to design a user-cluster-based precoding scheme for mitigating the cross-polarization and inter-user interference contributions. A theoretical correlation analysis for HMIMOS with infinitely small patch antennas is also presented. According to the proposed scheme, the users are assigned to one of the three polarizations, which is easy to implement, at the cost, however, of reducing the system's diversity. Our numerical results showcase that the cross-polarization channel components have a nonnegligible impact on the system performance, which is efficiently eliminated with the proposed MU precoding scheme.
Abstract:It is the pursuit of a multiple-input-multiple-output (MIMO) system to approach and even break the limit of channel capacity. However, it is always a big challenge to efficiently characterize the MIMO systems in complex space and get better propagation performance than the conventional MIMO systems considering only free space, which is important for guiding the power and phase allocation of antenna units. In this manuscript, an Electromagnetic-Information-Theory (EMIT) based model is developed for efficient characterization of MIMO systems in complex space. The group-T-matrix-based multiple scattering fast algorithm, the mode-decomposition-based characterization method, and their joint theoretical framework in complex space are discussed. Firstly, key informatics parameters in free electromagnetic space based on a dyadic Green's function are derived. Next, a novel group-T-matrix-based multiple scattering fast algorithm is developed to describe a representative inhomogeneous electromagnetic space. All the analytical results are validated by simulations. In addition, the complete form of the EMIT-based model is proposed to derive the informatics parameters frequently used in electromagnetic propagation, through integrating the mode analysis method with the dyadic Green's function matrix. Finally, as a proof-or-concept, microwave anechoic chamber measurements of a cylindrical array is performed, demonstrating the effectiveness of the EMIT-based model. Meanwhile, a case of image transmission with limited power is presented to illustrate how to use this EMIT-based model to guide the power and phase allocation of antenna units for real MIMO applications.
Abstract:In this paper, the channel of an indoor holographic multiple-input multiple-output (MIMO) system is measured. It is demonstrated through experiments for the first time that the spatial oversampling of holographic MIMO systems is able to increase the capacity of a wireless communication system significantly. However, the antenna efficiency is the most crucial challenge preventing us from getting the capacity improvement. An extended EM-compliant channel model is also proposed for holographic MIMO systems, which is able to take the non-isotropic characteristics of the propagation environment, the antenna pattern distortion, the antenna efficiency, and the polarization characteristics into consideration.
Abstract:This paper investigates the utilization of triple polarization (TP) for multi-user (MU) holographic multiple-input multi-output surface (HMIMOS) wireless communication systems, targeting capacity boosting and diversity exploitation without enlarging the antenna array sizes. We specifically consider that both the transmitter and receiver are both equipped with an HMIMOS consisting of compact sub-wavelength TP patch antennas within the near-field (NF) regime. To characterize TP MU-HMIMOS systems, a TP NF channel model is constructed using the dyadic Green's function, whose characteristics are leveraged to design two precoding schemes for mitigating the cross-polarization and inter-user interference contributions. Specifically, a user-cluster-based precoding scheme assigns different users to one of three polarizations at the expense of the system's diversity, and a two-layer precoding scheme removes interference using the Gaussian elimination method at a high computational cost. The theoretical correlation analysis for HMIMOS in the NF region is also investigated, revealing that both the spacing of transmit patch antennas and user distance impact transmit correlation factors. Our numerical results show that the users far from transmitting HMIMOS experience higher correlation than those closer within the NF regime, resulting in a lower channel capacity. Meanwhile, in terms of channel capacity, TP HMIMOS can almost achieve 1.25 times gain compared with dual-polarized HMIMOS, and 3 times compared with conventional HMIMOS. In addition, the proposed two-layer precoding scheme combined with two-layer power allocation realizes a higher spectral efficiency than other schemes without sacrificing diversity.
Abstract:Compared with a single-input-single-output (SISO) wireless communication system, the benefit of multiple-input-multiple-output (MIMO) technology originates from its extra degree of freedom (DOF), also referred as scattering channels or spatial electromagnetic (EM) modes, brought by spatial multiplexing. When the physical sizes of transmitting and receiving arrays are fixed, and there are sufficient antennas (typically with half-wavelength spacings), the DOF limit is only dependent on the propagating environment. Analytical methods can be used to estimate this limit in free space, and some approximate models are adopted in stochastic environments, such as Clarke's model and Ray-tracing methods. However, this DOF limit in an certain inhomogeneous environment has not been well discussed with rigorous full-wave numerical methods. In this work, volume integral equation (VIE) is implemented for investigating the limit of MIMO effective degree of freedom (EDOF) in three representative two-dimensional (2-D) inhomogeneous environments. Moreover, we clarify the relation between the performance of a MIMO system and the scattering characteristics of its propagating environment.