Linda
Abstract:The rapid advancement of artificial intelligence technologies, particularly in recent years, has led to the emergence of several large parameter artificial intelligence weather forecast models. These models represent a significant breakthrough, overcoming the limitations of traditional numerical weather prediction models and indicating a potential second revolution for weather forecast. This study explores the evolution of these advanced artificial intelligence forecast models, and based on the identified commonalities, proposes the "Three Large Rules" for their development. We discuss the potential of artificial intelligence in revolutionizing numerical weather prediction, briefly outlining the underlying reasons for this potential. Additionally, we explore key areas for future development prospects for large artificial intelligence weather forecast models, integrating the entire numerical prediction process. Through an example that combines a large artificial intelligence model with ocean wave forecasting, we illustrate how forecasters can adapt and leverage the advanced artificial intelligence model. While acknowledging the high accuracy, computational efficiency, and ease of deployment of large artificial intelligence forecast models, we emphasize the irreplaceable values of traditional numerical forecasts. We believe that the optimal future of weather forecasting lies in achieving a seamless integration of artificial intelligence and traditional numerical models. Such a synthesis is anticipated to offer a more comprehensive and reliable approach for future weather forecasting.
Abstract:Kilometer-scale modeling of global atmosphere dynamics enables fine-grained weather forecasting and decreases the risk of disastrous weather and climate activity. Therefore, building a kilometer-scale global forecast model is a persistent pursuit in the meteorology domain. Active international efforts have been made in past decades to improve the spatial resolution of numerical weather models. Nonetheless, developing the higher resolution numerical model remains a long-standing challenge due to the substantial consumption of computational resources. Recent advances in data-driven global weather forecasting models utilize reanalysis data for model training and have demonstrated comparable or even higher forecasting skills than numerical models. However, they are all limited by the resolution of reanalysis data and incapable of generating higher-resolution forecasts. This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$^{\circ}$ horizontal resolution. FengWu-GHR introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a pretrained low-resolution model. The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES. Furthermore, evaluations on station observations and case studies of extreme events support the competitive operational forecasting skill of FengWu-GHR at the high resolution.
Abstract:The weather forecasting system is important for science and society, and significant achievements have been made in applying artificial intelligence (AI) to medium-range weather forecasting. However, existing AI-based weather forecasting models still rely on analysis or reanalysis products from the traditional numerical weather prediction (NWP) systems as initial conditions for making predictions, preventing them from being fully independent systems. As a crucial component of an end-to-end global weather forecasting system, data assimilation is vital in generating initial states for forecasting. In this paper, we present an AI-based data assimilation model, i.e., Adas, for global weather variables, which learns to generate the analysis from the background and sparse observations. Different from existing assimilation methods, Adas employs the gated convolution module to handle sparse observations and the gated cross-attention module for capturing the interactions between observations and background efficiently, which are guided by the confidence matrix to represent the availability and quality of observations. Then, we combine Adas with the advanced AI-based weather forecasting model (i.e., FengWu) and construct the first end-to-end AI-based global weather forecasting system: FengWu-Adas. Experiments demonstrate that Adas can assimilate the simulated global observations with the AI-generated background through a one-year simulation and generate high-quality analysis stably in a cyclic manner. Based on the generated analysis, FengWu-Adas exhibits skillful performance and outperforms the Integrated Forecasting System (IFS) in weather forecasting over seven days.
Abstract:Weather forecasting is a crucial yet highly challenging task. With the maturity of Artificial Intelligence (AI), the emergence of data-driven weather forecasting models has opened up a new paradigm for the development of weather forecasting systems. Despite the significant successes that have been achieved (e.g., surpassing advanced traditional physical models for global medium-range forecasting), existing data-driven weather forecasting models still rely on the analysis fields generated by the traditional assimilation and forecasting system, which hampers the significance of data-driven weather forecasting models regarding both computational cost and forecasting accuracy. In this work, we explore the possibility of coupling the data-driven weather forecasting model with data assimilation by integrating the global AI weather forecasting model, FengWu, with one of the most popular assimilation algorithms, Four-Dimensional Variational (4DVar) assimilation, and develop an AI-based cyclic weather forecasting system, FengWu-4DVar. FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model and consider the temporal evolution of atmospheric dynamics to obtain accurate analysis fields for making predictions in a cycling manner without the help of physical models. Owning to the auto-differentiation ability of deep learning models, FengWu-4DVar eliminates the need of developing the cumbersome adjoint model, which is usually required in the traditional implementation of the 4DVar algorithm. Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields for making accurate and efficient iterative predictions.
Abstract:Most existing traffic sign-related works are dedicated to detecting and recognizing part of traffic signs individually, which fails to analyze the global semantic logic among signs and may convey inaccurate traffic instruction. Following the above issues, we propose a traffic sign interpretation (TSI) task, which aims to interpret global semantic interrelated traffic signs (e.g.,~driving instruction-related texts, symbols, and guide panels) into a natural language for providing accurate instruction support to autonomous or assistant driving. Meanwhile, we design a multi-task learning architecture for TSI, which is responsible for detecting and recognizing various traffic signs and interpreting them into a natural language like a human. Furthermore, the absence of a public TSI available dataset prompts us to build a traffic sign interpretation dataset, namely TSI-CN. The dataset consists of real road scene images, which are captured from the highway and the urban way in China from a driver's perspective. It contains rich location labels of texts, symbols, and guide panels, and the corresponding natural language description labels. Experiments on TSI-CN demonstrate that the TSI task is achievable and the TSI architecture can interpret traffic signs from scenes successfully even if there is a complex semantic logic among signs. The TSI-CN dataset and the source code of the TSI architecture will be publicly available after the revision process.
Abstract:Scale variation is a deep-rooted problem in object counting, which has not been effectively addressed by existing scale-aware algorithms. An important factor is that they typically involve cooperative learning across multi-resolutions, which could be suboptimal for learning the most discriminative features from each scale. In this paper, we propose a novel method termed STEERER (\textbf{S}elec\textbf{T}iv\textbf{E} inh\textbf{ER}itance l\textbf{E}a\textbf{R}ning) that addresses the issue of scale variations in object counting. STEERER selects the most suitable scale for patch objects to boost feature extraction and only inherits discriminative features from lower to higher resolution progressively. The main insights of STEERER are a dedicated Feature Selection and Inheritance Adaptor (FSIA), which selectively forwards scale-customized features at each scale, and a Masked Selection and Inheritance Loss (MSIL) that helps to achieve high-quality density maps across all scales. Our experimental results on nine datasets with counting and localization tasks demonstrate the unprecedented scale generalization ability of STEERER. Code is available at \url{https://github.com/taohan10200/STEERER}.
Abstract:Compositional Zero-shot Learning (CZSL) aims to recognize novel concepts composed of known knowledge without training samples. Standard CZSL either identifies visual primitives or enhances unseen composed entities, and as a result, entanglement between state and object primitives cannot be fully utilized. Admittedly, vision-language models (VLMs) could naturally cope with CZSL through tuning prompts, while uneven entanglement leads prompts to be dragged into local optimum. In this paper, we take a further step to introduce a novel Disentangled and Recurrent Prompt Tuning framework termed DRPT to better tap the potential of VLMs in CZSL. Specifically, the state and object primitives are deemed as learnable tokens of vocabulary embedded in prompts and tuned on seen compositions. Instead of jointly tuning state and object, we devise a disentangled and recurrent tuning strategy to suppress the traction force caused by entanglement and gradually optimize the token parameters, leading to a better prompt space. Notably, we develop a progressive fine-tuning procedure that allows for incremental updates to the prompts, optimizing the object first, then the state, and vice versa. Meanwhile, the optimization of state and object is independent, thus clearer features can be learned to further alleviate the issue of entangling misleading optimization. Moreover, we quantify and analyze the entanglement in CZSL and supplement entanglement rebalancing optimization schemes. DRPT surpasses representative state-of-the-art methods on extensive benchmark datasets, demonstrating superiority in both accuracy and efficiency.
Abstract:We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI). Different from existing data-driven weather forecast methods, FengWu solves the medium-range forecast problem from a multi-modal and multi-task perspective. Specifically, a deep learning architecture equipped with model-specific encoder-decoders and cross-modal fusion Transformer is elaborately designed, which is learned under the supervision of an uncertainty loss to balance the optimization of different predictors in a region-adaptive manner. Besides this, a replay buffer mechanism is introduced to improve medium-range forecast performance. With 39-year data training based on the ERA5 reanalysis, FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25{\deg} latitude-longitude resolution. Hindcasts of 6-hourly weather in 2018 based on ERA5 demonstrate that FengWu performs better than GraphCast in predicting 80\% of the 880 reported predictands, e.g., reducing the root mean square error (RMSE) of 10-day lead global z500 prediction from 733 to 651 $m^{2}/s^2$. In addition, the inference cost of each iteration is merely 600ms on NVIDIA Tesla A100 hardware. The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead (with ACC of z500 > 0.6) for the first time.
Abstract:Automating configuration is the key path to achieving zero-touch network management in ever-complicating mobile networks. Deep learning techniques show great potential to automatically learn and tackle high-dimensional networking problems. The vulnerability of deep learning to deviated input space, however, raises increasing deployment concerns under unpredictable variabilities and simulation-to-reality discrepancy in real-world networks. In this paper, we propose a novel RoNet framework to improve the robustness of neural-assisted configuration policies. We formulate the network configuration problem to maximize performance efficiency when serving diverse user applications. We design three integrated stages with novel normal training, learn-to-attack, and robust defense method for balancing the robustness and performance of policies. We evaluate RoNet via the NS-3 simulator extensively and the simulation results show that RoNet outperforms existing solutions in terms of robustness, adaptability, and scalability.
Abstract:Network slicing achieves cost-efficient slice customization to support heterogeneous applications and services. Configuring cross-domain resources to end-to-end slices based on service-level agreements, however, is challenging, due to the complicated underlying correlations and the simulation-to-reality discrepancy between simulators and real networks. In this paper, we propose Atlas, an online network slicing system, which automates the service configuration of slices via safe and sample-efficient learn-to-configure approaches in three interrelated stages. First, we design a learning-based simulator to reduce the sim-to-real discrepancy, which is accomplished by a new parameter searching method based on Bayesian optimization. Second, we offline train the policy in the augmented simulator via a novel offline algorithm with a Bayesian neural network and parallel Thompson sampling. Third, we online learn the policy in real networks with a novel online algorithm with safe exploration and Gaussian process regression. We implement Atlas on an end-to-end network prototype based on OpenAirInterface RAN, OpenDayLight SDN transport, OpenAir-CN core network, and Docker-based edge server. Experimental results show that, compared to state-of-the-art solutions, Atlas achieves 63.9% and 85.7% regret reduction on resource usage and slice quality of experience during the online learning stage, respectively.