Abstract:Neural Text-to-Speech (TTS) systems find broad applications in voice assistants, e-learning, and audiobook creation. The pursuit of modern models, like Diffusion Models (DMs), holds promise for achieving high-fidelity, real-time speech synthesis. Yet, the efficiency of multi-step sampling in Diffusion Models presents challenges. Efforts have been made to integrate GANs with DMs, speeding up inference by approximating denoising distributions, but this introduces issues with model convergence due to adversarial training. To overcome this, we introduce CM-TTS, a novel architecture grounded in consistency models (CMs). Drawing inspiration from continuous-time diffusion models, CM-TTS achieves top-quality speech synthesis in fewer steps without adversarial training or pre-trained model dependencies. We further design weighted samplers to incorporate different sampling positions into model training with dynamic probabilities, ensuring unbiased learning throughout the entire training process. We present a real-time mel-spectrogram generation consistency model, validated through comprehensive evaluations. Experimental results underscore CM-TTS's superiority over existing single-step speech synthesis systems, representing a significant advancement in the field.
Abstract:Large multimodal models extend the impressive capabilities of large language models by integrating multimodal understanding abilities. However, it is not clear how they can emulate the general intelligence and reasoning ability of humans. As recognizing patterns and abstracting concepts are key to general intelligence, we introduce PuzzleVQA, a collection of puzzles based on abstract patterns. With this dataset, we evaluate large multimodal models with abstract patterns based on fundamental concepts, including colors, numbers, sizes, and shapes. Through our experiments on state-of-the-art large multimodal models, we find that they are not able to generalize well to simple abstract patterns. Notably, even GPT-4V cannot solve more than half of the puzzles. To diagnose the reasoning challenges in large multimodal models, we progressively guide the models with our ground truth reasoning explanations for visual perception, inductive reasoning, and deductive reasoning. Our systematic analysis finds that the main bottlenecks of GPT-4V are weaker visual perception and inductive reasoning abilities. Through this work, we hope to shed light on the limitations of large multimodal models and how they can better emulate human cognitive processes in the future (Our data and code will be released publicly at https://github.com/declare-lab/LLM-PuzzleTest).
Abstract:This paper introduces the novel task of multimodal puzzle solving, framed within the context of visual question-answering. We present a new dataset, AlgoPuzzleVQA designed to challenge and evaluate the capabilities of multimodal language models in solving algorithmic puzzles that necessitate both visual understanding, language understanding, and complex algorithmic reasoning. We create the puzzles to encompass a diverse array of mathematical and algorithmic topics such as boolean logic, combinatorics, graph theory, optimization, search, etc., aiming to evaluate the gap between visual data interpretation and algorithmic problem-solving skills. The dataset is generated automatically from code authored by humans. All our puzzles have exact solutions that can be found from the algorithm without tedious human calculations. It ensures that our dataset can be scaled up arbitrarily in terms of reasoning complexity and dataset size. Our investigation reveals that large language models (LLMs) such as GPT4V and Gemini exhibit limited performance in puzzle-solving tasks. We find that their performance is near random in a multi-choice question-answering setup for a significant number of puzzles. The findings emphasize the challenges of integrating visual, language, and algorithmic knowledge for solving complex reasoning problems.
Abstract:Fine-tuning large language models (LLMs) on multi-task instruction-following data has been proven to be a powerful learning paradigm for improving their zero-shot capabilities on new tasks. Recent works about high-quality instruction-following data generation and selection require amounts of human labor to conceive model-understandable instructions for the given tasks and carefully filter the LLM-generated data. In this work, we introduce an automatic instruction augmentation method named INSTRAUG in multimodal tasks. It starts from a handful of basic and straightforward meta instructions but can expand an instruction-following dataset by 30 times. Results on two popular multimodal instructionfollowing benchmarks MULTIINSTRUCT and InstructBLIP show that INSTRAUG can significantly improve the alignment of multimodal large language models (MLLMs) across 12 multimodal tasks, which is even equivalent to the benefits of scaling up training data multiple times.
Abstract:Aligned language models face a significant limitation as their fine-tuning often results in compromised safety. To tackle this, we propose a simple method RESTA that performs LLM safety realignment. RESTA stands for REstoring Safety through Task Arithmetic. At its core, it involves a simple arithmetic addition of a safety vector to the weights of the compromised model. We demonstrate the effectiveness of RESTA in both parameter-efficient and full fine-tuning, covering a wide range of downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math. We also showcase the generalizability of RESTA on three existing safety evaluation benchmarks and a multilingual benchmark dataset proposed as a part of this work, consisting of 550 harmful questions covering 11 categories, each with 5 sub-categories of harm. Overall, RESTA decreases the harmfulness of the compromised model from 18.6% to 5.1% and from 9.2% to 1.5% in parameter-efficient and full fine-tuning, respectively, while maintaining most of the model's performance on the task. We release the source codes at: https://github.com/declare-lab/resta.
Abstract:Document-level Relation Triplet Extraction (DocRTE) is a fundamental task in information systems that aims to simultaneously extract entities with semantic relations from a document. Existing methods heavily rely on a substantial amount of fully labeled data. However, collecting and annotating data for newly emerging relations is time-consuming and labor-intensive. Recent advanced Large Language Models (LLMs), such as ChatGPT and LLaMA, exhibit impressive long-text generation capabilities, inspiring us to explore an alternative approach for obtaining auto-labeled documents with new relations. In this paper, we propose a Zero-shot Document-level Relation Triplet Extraction (ZeroDocRTE) framework, which generates labeled data by retrieval and denoising knowledge from LLMs, called GenRDK. Specifically, we propose a chain-of-retrieval prompt to guide ChatGPT to generate labeled long-text data step by step. To improve the quality of synthetic data, we propose a denoising strategy based on the consistency of cross-document knowledge. Leveraging our denoised synthetic data, we proceed to fine-tune the LLaMA2-13B-Chat for extracting document-level relation triplets. We perform experiments for both zero-shot document-level relation and triplet extraction on two public datasets. The experimental results illustrate that our GenRDK framework outperforms strong baselines.
Abstract:Existing multimodal sentiment analysis tasks are highly rely on the assumption that the training and test sets are complete multimodal data, while this assumption can be difficult to hold: the multimodal data are often incomplete in real-world scenarios. Therefore, a robust multimodal model in scenarios with randomly missing modalities is highly preferred. Recently, CLIP-based multimodal foundational models have demonstrated impressive performance on numerous multimodal tasks by learning the aligned cross-modal semantics of image and text pairs, but the multimodal foundational models are also unable to directly address scenarios involving modality absence. To alleviate this issue, we propose a simple and effective framework, namely TRML, Toward Robust Multimodal Learning using Multimodal Foundational Models. TRML employs generated virtual modalities to replace missing modalities, and aligns the semantic spaces between the generated and missing modalities. Concretely, we design a missing modality inference module to generate virtual modaliites and replace missing modalities. We also design a semantic matching learning module to align semantic spaces generated and missing modalities. Under the prompt of complete modality, our model captures the semantics of missing modalities by leveraging the aligned cross-modal semantic space. Experiments demonstrate the superiority of our approach on three multimodal sentiment analysis benchmark datasets, CMU-MOSI, CMU-MOSEI, and MELD.
Abstract:In the rapidly advancing field of artificial intelligence, the concept of Red-Teaming or Jailbreaking large language models (LLMs) has emerged as a crucial area of study. This approach is especially significant in terms of assessing and enhancing the safety and robustness of these models. This paper investigates the intricate consequences of such modifications through model editing, uncovering a complex relationship between enhancing model accuracy and preserving its ethical integrity. Our in-depth analysis reveals a striking paradox: while injecting accurate information is crucial for model reliability, it can paradoxically destabilize the model's foundational framework, resulting in unpredictable and potentially unsafe behaviors. Additionally, we propose a benchmark dataset NicheHazardQA to investigate this unsafe behavior both within the same and cross topical domain. This aspect of our research sheds light on how the edits, impact the model's safety metrics and guardrails. Our findings show that model editing serves as a cost-effective tool for topical red-teaming by methodically applying targeted edits and evaluating the resultant model behavior
Abstract:Recent advancements in Large Language Models (LLMs) have showcased striking results on existing logical reasoning benchmarks, with some models even surpassing human performance. However, the true depth of their competencies and robustness, in mathematical reasoning tasks, remains an open question. In response, we develop (i) an ontology of perturbations of maths questions, (ii) a semi-automatic method of perturbation, and (iii) a dataset of perturbed maths questions to probe the limits of LLM capabilities in mathematical reasoning tasks. These controlled perturbations span across multiple fine dimensions of the structural and representational aspects of maths questions. Using GPT-4, we generated the MORE dataset by perturbing randomly selected five seed questions from GSM8K. This process was guided by our ontology and involved a thorough automatic and manual filtering process, yielding a set of 216 maths problems. We conducted comprehensive evaluation of both closed-source and open-source LLMs on MORE. The results show a significant performance drop across all the models against the perturbed questions. This strongly suggests that current LLMs lack robust mathematical skills and deep reasoning abilities. This research not only identifies multiple gaps in the capabilities of current models, but also highlights multiple potential directions for future development. Our dataset will be made publicly available at https://huggingface.co/datasets/declare-lab/GSM8k_MORE.
Abstract:Despite the success of chain of thought in enhancing language model reasoning, the underlying process remains less well understood. Although logically sound reasoning appears inherently crucial for chain of thought, prior studies surprisingly reveal minimal impact when using invalid demonstrations instead. Furthermore, the conventional chain of thought does not inform language models on what mistakes to avoid, which potentially leads to more errors. Hence, inspired by how humans can learn from both positive and negative examples, we propose contrastive chain of thought to enhance language model reasoning. Compared to the conventional chain of thought, our approach provides both valid and invalid reasoning demonstrations, to guide the model to reason step-by-step while reducing reasoning mistakes. To improve generalization, we introduce an automatic method to construct contrastive demonstrations. Our experiments on reasoning benchmarks demonstrate that contrastive chain of thought can serve as a general enhancement of chain-of-thought prompting.