Alert button
Picture for Ruohan Zhan

Ruohan Zhan

Alert button

Proportional Response: Contextual Bandits for Simple and Cumulative Regret Minimization

Jul 05, 2023
Sanath Kumar Krishnamurthy, Ruohan Zhan, Susan Athey, Emma Brunskill

Figure 1 for Proportional Response: Contextual Bandits for Simple and Cumulative Regret Minimization

Simple regret minimization is a critical problem in learning optimal treatment assignment policies across various domains, including healthcare and e-commerce. However, it remains understudied in the contextual bandit setting. We propose a new family of computationally efficient bandit algorithms for the stochastic contextual bandit settings, with the flexibility to be adapted for cumulative regret minimization (with near-optimal minimax guarantees) and simple regret minimization (with SOTA guarantees). Furthermore, our algorithms adapt to model misspecification and extend to the continuous arm settings. These advantages come from constructing and relying on "conformal arm sets" (CASs), which provide a set of arms at every context that encompass the context-specific optimal arm with some probability across the context distribution. Our positive results on simple and cumulative regret guarantees are contrasted by a negative result, which shows that an algorithm can't achieve instance-dependent simple regret guarantees while simultaneously achieving minimax optimal cumulative regret guarantees.

Viaarxiv icon

Post-Episodic Reinforcement Learning Inference

Feb 17, 2023
Vasilis Syrgkanis, Ruohan Zhan

We consider estimation and inference with data collected from episodic reinforcement learning (RL) algorithms; i.e. adaptive experimentation algorithms that at each period (aka episode) interact multiple times in a sequential manner with a single treated unit. Our goal is to be able to evaluate counterfactual adaptive policies after data collection and to estimate structural parameters such as dynamic treatment effects, which can be used for credit assignment (e.g. what was the effect of the first period action on the final outcome). Such parameters of interest can be framed as solutions to moment equations, but not minimizers of a population loss function, leading to Z-estimation approaches in the case of static data. However, such estimators fail to be asymptotically normal in the case of adaptive data collection. We propose a re-weighted Z-estimation approach with carefully designed adaptive weights to stabilize the episode-varying estimation variance, which results from the nonstationary policy that typical episodic RL algorithms invoke. We identify proper weighting schemes to restore the consistency and asymptotic normality of the re-weighted Z-estimators for target parameters, which allows for hypothesis testing and constructing reliable confidence regions for target parameters of interest. Primary applications include dynamic treatment effect estimation and dynamic off-policy evaluation.

Viaarxiv icon

Two-Stage Constrained Actor-Critic for Short Video Recommendation

Feb 06, 2023
Qingpeng Cai, Zhenghai Xue, Chi Zhang, Wanqi Xue, Shuchang Liu, Ruohan Zhan, Xueliang Wang, Tianyou Zuo, Wentao Xie, Dong Zheng, Peng Jiang, Kun Gai

Figure 1 for Two-Stage Constrained Actor-Critic for Short Video Recommendation
Figure 2 for Two-Stage Constrained Actor-Critic for Short Video Recommendation
Figure 3 for Two-Stage Constrained Actor-Critic for Short Video Recommendation
Figure 4 for Two-Stage Constrained Actor-Critic for Short Video Recommendation

The wide popularity of short videos on social media poses new opportunities and challenges to optimize recommender systems on the video-sharing platforms. Users sequentially interact with the system and provide complex and multi-faceted responses, including watch time and various types of interactions with multiple videos. One the one hand, the platforms aims at optimizing the users' cumulative watch time (main goal) in long term, which can be effectively optimized by Reinforcement Learning. On the other hand, the platforms also needs to satisfy the constraint of accommodating the responses of multiple user interactions (auxiliary goals) such like, follow, share etc. In this paper, we formulate the problem of short video recommendation as a Constrained Markov Decision Process (CMDP). We find that traditional constrained reinforcement learning algorithms can not work well in this setting. We propose a novel two-stage constrained actor-critic method: At stage one, we learn individual policies to optimize each auxiliary signal. At stage two, we learn a policy to (i) optimize the main signal and (ii) stay close to policies learned at the first stage, which effectively guarantees the performance of this main policy on the auxiliaries. Through extensive offline evaluations, we demonstrate effectiveness of our method over alternatives in both optimizing the main goal as well as balancing the others. We further show the advantage of our method in live experiments of short video recommendations, where it significantly outperforms other baselines in terms of both watch time and interactions. Our approach has been fully launched in the production system to optimize user experiences on the platform.

* The Web Conference 2023  
* arXiv admin note: substantial text overlap with arXiv:2205.13248 
Viaarxiv icon

Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation

Jun 13, 2022
Ruohan Zhan, Changhua Pei, Qiang Su, Jianfeng Wen, Xueliang Wang, Guanyu Mu, Dong Zheng, Peng Jiang

Figure 1 for Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation
Figure 2 for Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation
Figure 3 for Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation
Figure 4 for Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation

Watch-time prediction remains to be a key factor in reinforcing user engagement via video recommendations. It has become increasingly important given the ever-growing popularity of online videos. However, prediction of watch time not only depends on the match between the user and the video but is often mislead by the duration of the video itself. With the goal of improving watch time, recommendation is always biased towards videos with long duration. Models trained on this imbalanced data face the risk of bias amplification, which misguides platforms to over-recommend videos with long duration but overlook the underlying user interests. This paper presents the first work to study duration bias in watch-time prediction for video recommendation. We employ a causal graph illuminating that duration is a confounding factor that concurrently affects video exposure and watch-time prediction -- the first effect on video causes the bias issue and should be eliminated, while the second effect on watch time originates from video intrinsic characteristics and should be preserved. To remove the undesired bias but leverage the natural effect, we propose a Duration Deconfounded Quantile-based (D2Q) watch-time prediction framework, which allows for scalability to perform on industry production systems. Through extensive offline evaluation and live experiments, we showcase the effectiveness of this duration-deconfounding framework by significantly outperforming the state-of-the-art baselines. We have fully launched our approach on Kuaishou App, which has substantially improved real-time video consumption due to more accurate watch-time predictions.

* 10 pages 
Viaarxiv icon

ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor

Jun 01, 2022
Wanqi Xue, Qingpeng Cai, Ruohan Zhan, Dong Zheng, Peng Jiang, Bo An

Figure 1 for ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor
Figure 2 for ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor
Figure 3 for ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor
Figure 4 for ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor

Long-term engagement is preferred over immediate engagement in sequential recommendation as it directly affects product operational metrics such as daily active users (DAUs) and dwell time. Meanwhile, reinforcement learning (RL) is widely regarded as a promising framework for optimizing long-term engagement in sequential recommendation. However, due to expensive online interactions, it is very difficult for RL algorithms to perform state-action value estimation, exploration and feature extraction when optimizing long-term engagement. In this paper, we propose ResAct which seeks a policy that is close to, but better than, the online-serving policy. In this way, we can collect sufficient data near the learned policy so that state-action values can be properly estimated, and there is no need to perform online exploration. Directly optimizing this policy is difficult due to the huge policy space. ResAct instead solves it by first reconstructing the online behaviors and then improving it. Our main contributions are fourfold. First, we design a generative model which reconstructs behaviors of the online-serving policy by sampling multiple action estimators. Second, we design an effective learning paradigm to train the residual actor which can output the residual for action improvement. Third, we facilitate the extraction of features with two information theoretical regularizers to confirm the expressiveness and conciseness of features. Fourth, we conduct extensive experiments on a real world dataset consisting of millions of sessions, and our method significantly outperforms the state-of-the-art baselines in various of long term engagement optimization tasks.

Viaarxiv icon

Constrained Reinforcement Learning for Short Video Recommendation

May 26, 2022
Qingpeng Cai, Ruohan Zhan, Chi Zhang, Jie Zheng, Guangwei Ding, Pinghua Gong, Dong Zheng, Peng Jiang

Figure 1 for Constrained Reinforcement Learning for Short Video Recommendation
Figure 2 for Constrained Reinforcement Learning for Short Video Recommendation
Figure 3 for Constrained Reinforcement Learning for Short Video Recommendation
Figure 4 for Constrained Reinforcement Learning for Short Video Recommendation

The wide popularity of short videos on social media poses new opportunities and challenges to optimize recommender systems on the video-sharing platforms. Users provide complex and multi-faceted responses towards recommendations, including watch time and various types of interactions with videos. As a result, established recommendation algorithms that concern a single objective are not adequate to meet this new demand of optimizing comprehensive user experiences. In this paper, we formulate the problem of short video recommendation as a constrained Markov Decision Process (MDP), where platforms want to optimize the main goal of user watch time in long term, with the constraint of accommodating the auxiliary responses of user interactions such as sharing/downloading videos. To solve the constrained MDP, we propose a two-stage reinforcement learning approach based on actor-critic framework. At stage one, we learn individual policies to optimize each auxiliary response. At stage two, we learn a policy to (i) optimize the main response and (ii) stay close to policies learned at the first stage, which effectively guarantees the performance of this main policy on the auxiliaries. Through extensive simulations, we demonstrate effectiveness of our approach over alternatives in both optimizing the main goal as well as balancing the others. We further show the advantage of our approach in live experiments of short video recommendations, where it significantly outperforms other baselines in terms of watch time and interactions from video views. Our approach has been fully launched in the production system to optimize user experiences on the platform.

Viaarxiv icon

Off-Policy Evaluation via Adaptive Weighting with Data from Contextual Bandits

Jun 10, 2021
Ruohan Zhan, Vitor Hadad, David A. Hirshberg, Susan Athey

Figure 1 for Off-Policy Evaluation via Adaptive Weighting with Data from Contextual Bandits
Figure 2 for Off-Policy Evaluation via Adaptive Weighting with Data from Contextual Bandits
Figure 3 for Off-Policy Evaluation via Adaptive Weighting with Data from Contextual Bandits
Figure 4 for Off-Policy Evaluation via Adaptive Weighting with Data from Contextual Bandits

It has become increasingly common for data to be collected adaptively, for example using contextual bandits. Historical data of this type can be used to evaluate other treatment assignment policies to guide future innovation or experiments. However, policy evaluation is challenging if the target policy differs from the one used to collect data, and popular estimators, including doubly robust (DR) estimators, can be plagued by bias, excessive variance, or both. In particular, when the pattern of treatment assignment in the collected data looks little like the pattern generated by the policy to be evaluated, the importance weights used in DR estimators explode, leading to excessive variance. In this paper, we improve the DR estimator by adaptively weighting observations to control its variance. We show that a t-statistic based on our improved estimator is asymptotically normal under certain conditions, allowing us to form confidence intervals and test hypotheses. Using synthetic data and public benchmarks, we provide empirical evidence for our estimator's improved accuracy and inferential properties relative to existing alternatives.

Viaarxiv icon

Towards Content Provider Aware Recommender Systems: A Simulation Study on the Interplay between User and Provider Utilities

May 06, 2021
Ruohan Zhan, Konstantina Christakopoulou, Ya Le, Jayden Ooi, Martin Mladenov, Alex Beutel, Craig Boutilier, Ed H. Chi, Minmin Chen

Figure 1 for Towards Content Provider Aware Recommender Systems: A Simulation Study on the Interplay between User and Provider Utilities
Figure 2 for Towards Content Provider Aware Recommender Systems: A Simulation Study on the Interplay between User and Provider Utilities
Figure 3 for Towards Content Provider Aware Recommender Systems: A Simulation Study on the Interplay between User and Provider Utilities
Figure 4 for Towards Content Provider Aware Recommender Systems: A Simulation Study on the Interplay between User and Provider Utilities

Most existing recommender systems focus primarily on matching users to content which maximizes user satisfaction on the platform. It is increasingly obvious, however, that content providers have a critical influence on user satisfaction through content creation, largely determining the content pool available for recommendation. A natural question thus arises: can we design recommenders taking into account the long-term utility of both users and content providers? By doing so, we hope to sustain more providers and a more diverse content pool for long-term user satisfaction. Understanding the full impact of recommendations on both user and provider groups is challenging. This paper aims to serve as a research investigation of one approach toward building a provider-aware recommender, and evaluating its impact in a simulated setup. To characterize the user-recommender-provider interdependence, we complement user modeling by formalizing provider dynamics as well. The resulting joint dynamical system gives rise to a weakly-coupled partially observable Markov decision process driven by recommender actions and user feedback to providers. We then build a REINFORCE recommender agent, coined EcoAgent, to optimize a joint objective of user utility and the counterfactual utility lift of the provider associated with the recommended content, which we show to be equivalent to maximizing overall user utility and the utilities of all providers on the platform under some mild assumptions. To evaluate our approach, we introduce a simulation environment capturing the key interactions among users, providers, and the recommender. We offer a number of simulated experiments that shed light on both the benefits and the limitations of our approach. These results help understand how and when a provider-aware recommender agent is of benefit in building multi-stakeholder recommender systems.

Viaarxiv icon

Policy Learning with Adaptively Collected Data

May 05, 2021
Ruohan Zhan, Zhimei Ren, Susan Athey, Zhengyuan Zhou

Figure 1 for Policy Learning with Adaptively Collected Data
Figure 2 for Policy Learning with Adaptively Collected Data
Figure 3 for Policy Learning with Adaptively Collected Data
Figure 4 for Policy Learning with Adaptively Collected Data

Learning optimal policies from historical data enables the gains from personalization to be realized in a wide variety of applications. The growing policy learning literature focuses on a setting where the treatment assignment policy does not adapt to the data. However, adaptive data collection is becoming more common in practice, from two primary sources: 1) data collected from adaptive experiments that are designed to improve inferential efficiency; 2) data collected from production systems that are adaptively evolving an operational policy to improve performance over time (e.g. contextual bandits). In this paper, we aim to address the challenge of learning the optimal policy with adaptively collected data and provide one of the first theoretical inquiries into this problem. We propose an algorithm based on generalized augmented inverse propensity weighted estimators and establish its finite-sample regret bound. We complement this regret upper bound with a lower bound that characterizes the fundamental difficulty of policy learning with adaptive data. Finally, we demonstrate our algorithm's effectiveness using both synthetic data and public benchmark datasets.

Viaarxiv icon