Abstract:In clinical operations, teamwork can be the crucial factor that determines the final outcome. Prior studies have shown that sufficient collaboration is the key factor that determines the outcome of an operation. To understand how the team practices teamwork during the operation, we collected CliniDial from simulations of medical operations. CliniDial includes the audio data and its transcriptions, the simulated physiology signals of the patient manikins, and how the team operates from two camera angles. We annotate behavior codes following an existing framework to understand the teamwork process for CliniDial. We pinpoint three main characteristics of our dataset, including its label imbalances, rich and natural interactions, and multiple modalities, and conduct experiments to test existing LLMs' capabilities on handling data with these characteristics. Experimental results show that CliniDial poses significant challenges to the existing models, inviting future effort on developing methods that can deal with real-world clinical data. We open-source the codebase at https://github.com/MichiganNLP/CliniDial
Abstract:Videos are prominent learning materials to prepare surgical trainees before they enter the operating room (OR). In this work, we explore techniques to enrich the video-based surgery learning experience. We propose Surgment, a system that helps expert surgeons create exercises with feedback based on surgery recordings. Surgment is powered by a few-shot-learning-based pipeline (SegGPT+SAM) to segment surgery scenes, achieving an accuracy of 92\%. The segmentation pipeline enables functionalities to create visual questions and feedback desired by surgeons from a formative study. Surgment enables surgeons to 1) retrieve frames of interest through sketches, and 2) design exercises that target specific anatomical components and offer visual feedback. In an evaluation study with 11 surgeons, participants applauded the search-by-sketch approach for identifying frames of interest and found the resulting image-based questions and feedback to be of high educational value.