Abstract:Generation-driven world models create immersive virtual environments but suffer slow inference due to the iterative nature of diffusion models. While recent advances have improved diffusion model efficiency, directly applying these techniques to world models introduces limitations such as quality degradation. In this paper, we present HERO, a training-free hierarchical acceleration framework tailored for efficient world models. Owing to the multi-modal nature of world models, we identify a feature coupling phenomenon, wherein shallow layers exhibit high temporal variability, while deeper layers yield more stable feature representations. Motivated by this, HERO adopts hierarchical strategies to accelerate inference: (i) In shallow layers, a patch-wise refresh mechanism efficiently selects tokens for recomputation. With patch-wise sampling and frequency-aware tracking, it avoids extra metric computation and remain compatible with FlashAttention. (ii) In deeper layers, a linear extrapolation scheme directly estimates intermediate features. This completely bypasses the computations in attention modules and feed-forward networks. Our experiments show that HERO achieves a 1.73$\times$ speedup with minimal quality degradation, significantly outperforming existing diffusion acceleration methods.
Abstract:With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.
Abstract:Existing camera motion-controlled video generation methods face computational bottlenecks in fine-tuning and inference. This paper proposes LightMotion, a light and tuning-free method for simulating camera motion in video generation. Operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation, making it more streamlined than existing methods. The endeavors of this paper comprise: (i) The latent space permutation operation effectively simulates various camera motions like panning, zooming, and rotation. (ii) The latent space resampling strategy combines background-aware sampling and cross-frame alignment to accurately fill new perspectives while maintaining coherence across frames. (iii) Our in-depth analysis shows that the permutation and resampling cause an SNR shift in latent space, leading to poor-quality generation. To address this, we propose latent space correction, which reintroduces noise during denoising to mitigate SNR shift and enhance video generation quality. Exhaustive experiments show that our LightMotion outperforms existing methods, both quantitatively and qualitatively.
Abstract:This paper presents UniVST, a unified framework for localized video style transfer. It operates without the need for training, offering a distinct advantage over existing methods that transfer style across entire videos. The endeavors of this paper comprise: (1) A point-matching mask propagation strategy that leverages feature maps from the DDIM inversion. This streamlines the model's architecture by obviating the need for tracking models. (2) An AdaIN-guided style transfer mechanism that operates at both the latent and attention levels. This balances content fidelity and style richness, mitigating the loss of localized details commonly associated with direct video stylization. (3) A sliding window smoothing strategy that harnesses optical flow within the pixel representation and refines predicted noise to update the latent space. This significantly enhances temporal consistency and diminishes artifacts in video outputs. Our proposed UniVST has been validated to be superior to existing methods in quantitative and qualitative metrics. It adeptly addresses the challenges of preserving the primary object's style while ensuring temporal consistency and detail preservation.