Abstract:In recent years, non-intrusive load monitoring (NILM) technology has attracted much attention in the related research field by virtue of its unique advantage of utilizing single meter data to achieve accurate decomposition of device-level energy consumption. Cutting-edge methods based on machine learning and deep learning have achieved remarkable results in load decomposition accuracy by fusing time-frequency domain features. However, these methods generally suffer from high computational costs and huge memory requirements, which become the main obstacles for their deployment on resource-constrained microcontroller units (MCUs). To address these challenges, this study proposes an innovative Dynamic Time Warping (DTW) algorithm in the time-frequency domain and systematically compares and analyzes the performance of six machine learning techniques in home electricity scenarios. Through complete experimental validation on edge MCUs, this scheme successfully achieves a recognition accuracy of 95%. Meanwhile, this study deeply optimizes the frequency domain feature extraction process, which effectively reduces the running time by 55.55% and the storage overhead by about 34.6%. The algorithm performance will be further optimized in future research work. Considering that the elimination of voltage transformer design can significantly reduce the cost, the subsequent research will focus on this direction, and is committed to providing more cost-effective solutions for the practical application of NILM, and providing a solid theoretical foundation and feasible technical paths for the design of efficient NILM systems in edge computing environments.