Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Qinghua Liu, Meng Ge, Zhizheng Wu, Haizhou Li

It is common in everyday spoken communication that we look at the turning head of a talker to listen to his/her voice. Humans see the talker to listen better, so do machines. However, previous studies on audio-visual speaker extraction have not effectively handled the varying talking face. This paper studies how to take full advantage of the varying talking face. We propose a Pose-Invariant Audio-Visual Speaker Extraction Network (PIAVE) that incorporates an additional pose-invariant view to improve audio-visual speaker extraction. Specifically, we generate the pose-invariant view from each original pose orientation, which enables the model to receive a consistent frontal view of the talker regardless of his/her head pose, therefore, forming a multi-view visual input for the speaker. Experiments on the multi-view MEAD and in-the-wild LRS3 dataset demonstrate that PIAVE outperforms the state-of-the-art and is more robust to pose variations.

Via

Yuanhao Wang, Qinghua Liu, Chi Jin

Reinforcement learning from Human Feedback (RLHF) learns from preference signals, while standard Reinforcement Learning (RL) directly learns from reward signals. Preferences arguably contain less information than rewards, which makes preference-based RL seemingly more difficult. This paper theoretically proves that, for a wide range of preference models, we can solve preference-based RL directly using existing algorithms and techniques for reward-based RL, with small or no extra costs. Specifically, (1) for preferences that are drawn from reward-based probabilistic models, we reduce the problem to robust reward-based RL that can tolerate small errors in rewards; (2) for general arbitrary preferences where the objective is to find the von Neumann winner, we reduce the problem to multiagent reward-based RL which finds Nash equilibria for factored Markov games under a restricted set of policies. The latter case can be further reduce to adversarial MDP when preferences only depend on the final state. We instantiate all reward-based RL subroutines by concrete provable algorithms, and apply our theory to a large class of models including tabular MDPs and MDPs with generic function approximation. We further provide guarantees when K-wise comparisons are available.

Via

Chung-Wei Lee, Qinghua Liu, Yasin Abbasi-Yadkori, Chi Jin, Tor Lattimore, Csaba Szepesvári

We consider a contextual bandit problem with $S $ contexts and $A $ actions. In each round $t=1,2,\dots$ the learner observes a random context and chooses an action based on its past experience. The learner then observes a random reward whose mean is a function of the context and the action for the round. Under the assumption that the contexts can be lumped into $r\le \min\{S ,A \}$ groups such that the mean reward for the various actions is the same for any two contexts that are in the same group, we give an algorithm that outputs an $\epsilon$-optimal policy after using at most $\widetilde O(r (S +A )/\epsilon^2)$ samples with high probability and provide a matching $\widetilde\Omega(r (S +A )/\epsilon^2)$ lower bound. In the regret minimization setting, we give an algorithm whose cumulative regret up to time $T$ is bounded by $\widetilde O(\sqrt{r^3(S +A )T})$. To the best of our knowledge, we are the first to show the near-optimal sample complexity in the PAC setting and $\widetilde O(\sqrt{{poly}(r)(S+K)T})$ minimax regret in the online setting for this problem. We also show our algorithms can be applied to more general low-rank bandits and get improved regret bounds in some scenarios.

Via

Qinghua Liu, Gellért Weisz, András György, Chi Jin, Csaba Szepesvári

While policy optimization algorithms have played an important role in recent empirical success of Reinforcement Learning (RL), the existing theoretical understanding of policy optimization remains rather limited -- they are either restricted to tabular MDPs or suffer from highly suboptimal sample complexity, especial in online RL where exploration is necessary. This paper proposes a simple efficient policy optimization framework -- Optimistic NPG for online RL. Optimistic NPG can be viewed as simply combining of the classic natural policy gradient (NPG) algorithm [Kakade, 2001] with optimistic policy evaluation subroutines to encourage exploration. For $d$-dimensional linear MDPs, Optimistic NPG is computationally efficient, and learns an $\varepsilon$-optimal policy within $\tilde{O}(d^2/\varepsilon^3)$ samples, which is the first computationally efficient algorithm whose sample complexity has the optimal dimension dependence $\tilde{\Theta}(d^2)$. It also improves over state-of-the-art results of policy optimization algorithms [Zanette et al., 2021] by a factor of $d$. For general function approximation that subsumes linear MDPs, Optimistic NPG, to our best knowledge, is also the first policy optimization algorithm that achieves the polynomial sample complexity for learning near-optimal policies.

Via

Yuanhao Wang, Qinghua Liu, Yu Bai, Chi Jin

A unique challenge in Multi-Agent Reinforcement Learning (MARL) is the curse of multiagency, where the description length of the game as well as the complexity of many existing learning algorithms scale exponentially with the number of agents. While recent works successfully address this challenge under the model of tabular Markov Games, their mechanisms critically rely on the number of states being finite and small, and do not extend to practical scenarios with enormous state spaces where function approximation must be used to approximate value functions or policies. This paper presents the first line of MARL algorithms that provably resolve the curse of multiagency under function approximation. We design a new decentralized algorithm -- V-Learning with Policy Replay, which gives the first polynomial sample complexity results for learning approximate Coarse Correlated Equilibria (CCEs) of Markov Games under decentralized linear function approximation. Our algorithm always outputs Markov CCEs, and achieves an optimal rate of $\widetilde{\mathcal{O}}(\epsilon^{-2})$ for finding $\epsilon$-optimal solutions. Also, when restricted to the tabular case, our result improves over the current best decentralized result $\widetilde{\mathcal{O}}(\epsilon^{-3})$ for finding Markov CCEs. We further present an alternative algorithm -- Decentralized Optimistic Policy Mirror Descent, which finds policy-class-restricted CCEs using a polynomial number of samples. In exchange for learning a weaker version of CCEs, this algorithm applies to a wider range of problems under generic function approximation, such as linear quadratic games and MARL problems with low ''marginal'' Eluder dimension.

Via

Qinghua Liu, Praneeth Netrapalli, Csaba Szepesvari, Chi Jin

This paper introduces a simple efficient learning algorithms for general sequential decision making. The algorithm combines Optimism for exploration with Maximum Likelihood Estimation for model estimation, which is thus named OMLE. We prove that OMLE learns the near-optimal policies of an enormously rich class of sequential decision making problems in a polynomial number of samples. This rich class includes not only a majority of known tractable model-based Reinforcement Learning (RL) problems (such as tabular MDPs, factored MDPs, low witness rank problems, tabular weakly-revealing/observable POMDPs and multi-step decodable POMDPs), but also many new challenging RL problems especially in the partially observable setting that were not previously known to be tractable. Notably, the new problems addressed by this paper include (1) observable POMDPs with continuous observation and function approximation, where we achieve the first sample complexity that is completely independent of the size of observation space; (2) well-conditioned low-rank sequential decision making problems (also known as Predictive State Representations (PSRs)), which include and generalize all known tractable POMDP examples under a more intrinsic representation; (3) general sequential decision making problems under SAIL condition, which unifies our existing understandings of model-based RL in both fully observable and partially observable settings. SAIL condition is identified by this paper, which can be viewed as a natural generalization of Bellman/witness rank to address partial observability.

Via

Qinghua Liu, Yuxiang Jiang

The increasing scale of model size and continuous improvement of performance herald the arrival of the Big Model era. In this report, we explore what and how the big model training works by diving into training objectives and training methodologies. Specifically,training objectives describe how to leverage web-scale data to develop extremely capable and incredibly large models based on self-supervised learning, and training methodologies which are based on distributed training describe how to make big model training a reality. We summarize the existing training methodologies into three main categories: training parallelism, memory-saving technologies, and model sparsity design. Training parallelism can be categorized into data, pipeline, and tensor parallelism according to the dimension of parallelism that takes place. Memory-saving technologies are orthogonal and complementary to training parallelism. And model sparsity design further scales up the model size with a constant computational cost. A continuously updated paper list of big model training is provided at https://github.com/qhliu26/BM-Training.

Via

Zihan Ding, Dijia Su, Qinghua Liu, Chi Jin

This paper proposes novel, end-to-end deep reinforcement learning algorithms for learning two-player zero-sum Markov games. Our objective is to find the Nash Equilibrium policies, which are free from exploitation by adversarial opponents. Distinct from prior efforts on finding Nash equilibria in extensive-form games such as Poker, which feature tree-structured transition dynamics and discrete state space, this paper focuses on Markov games with general transition dynamics and continuous state space. We propose (1) Nash DQN algorithm, which integrates DQN with a Nash finding subroutine for the joint value functions; and (2) Nash DQN Exploiter algorithm, which additionally adopts an exploiter for guiding agent's exploration. Our algorithms are the practical variants of theoretical algorithms which are guaranteed to converge to Nash equilibria in the basic tabular setting. Experimental evaluation on both tabular examples and two-player Atari games demonstrates the robustness of the proposed algorithms against adversarial opponents, as well as their advantageous performance over existing methods.

Via

Runyu Zhang, Qinghua Liu, Huan Wang, Caiming Xiong, Na Li, Yu Bai

This paper studies policy optimization algorithms for multi-agent reinforcement learning. We begin by proposing an algorithm framework for two-player zero-sum Markov Games in the full-information setting, where each iteration consists of a policy update step at each state using a certain matrix game algorithm, and a value update step with a certain learning rate. This framework unifies many existing and new policy optimization algorithms. We show that the state-wise average policy of this algorithm converges to an approximate Nash equilibrium (NE) of the game, as long as the matrix game algorithms achieve low weighted regret at each state, with respect to weights determined by the speed of the value updates. Next, we show that this framework instantiated with the Optimistic Follow-The-Regularized-Leader (OFTRL) algorithm at each state (and smooth value updates) can find an $\mathcal{\widetilde{O}}(T^{-5/6})$ approximate NE in $T$ iterations, which improves over the current best $\mathcal{\widetilde{O}}(T^{-1/2})$ rate of symmetric policy optimization type algorithms. We also extend this algorithm to multi-player general-sum Markov Games and show an $\mathcal{\widetilde{O}}(T^{-3/4})$ convergence rate to Coarse Correlated Equilibria (CCE). Finally, we provide a numerical example to verify our theory and investigate the importance of smooth value updates, and find that using "eager" value updates instead (equivalent to the independent natural policy gradient algorithm) may significantly slow down the convergence, even on a simple game with $H=2$ layers.

Via

Qinghua Liu, Csaba Szepesvári, Chi Jin

This paper considers the challenging tasks of Multi-Agent Reinforcement Learning (MARL) under partial observability, where each agent only sees her own individual observations and actions that reveal incomplete information about the underlying state of system. This paper studies these tasks under the general model of multiplayer general-sum Partially Observable Markov Games (POMGs), which is significantly larger than the standard model of Imperfect Information Extensive-Form Games (IIEFGs). We identify a rich subclass of POMGs -- weakly revealing POMGs -- in which sample-efficient learning is tractable. In the self-play setting, we prove that a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to find approximate Nash equilibria, correlated equilibria, as well as coarse correlated equilibria of weakly revealing POMGs, in a polynomial number of samples when the number of agents is small. In the setting of playing against adversarial opponents, we show that a variant of our optimistic MLE algorithm is capable of achieving sublinear regret when being compared against the optimal maximin policies. To our best knowledge, this work provides the first line of sample-efficient results for learning POMGs.

Via