Abstract:In-context learning (ICL) has emerged as a powerful paradigm for task adaptation in large language models (LLMs), where models infer underlying task structures from a few demonstrations. However, ICL remains susceptible to biases that arise from prior knowledge and contextual demonstrations, which can degrade the performance of LLMs. Existing bias calibration methods typically apply fixed class priors across all inputs, limiting their efficacy in dynamic ICL settings where the context for each query differs. To address these limitations, we adopt implicit sequential Bayesian inference as a framework for interpreting ICL, identify "surprise" as an informative signal for class prior shift, and introduce a novel method--Surprise Calibration (SC). SC leverages the notion of surprise to capture the temporal dynamics of class priors, providing a more adaptive and computationally efficient solution for in-context learning. We empirically demonstrate the superiority of SC over existing bias calibration techniques across a range of benchmark natural language processing tasks.
Abstract:Archives play a crucial role in preserving information and knowledge, and the exponential growth of such data necessitates efficient and automated tools for managing and utilizing archive information resources. Archival applications involve managing massive data that are challenging to process and analyze. Although LLMs have made remarkable progress in diverse domains, there are no publicly available archives tailored LLM. Addressing this gap, we introduce ArcGPT, to our knowledge, the first general-purpose LLM tailored to the archival field. To enhance model performance on real-world archival tasks, ArcGPT has been pre-trained on massive and extensive archival domain data. Alongside ArcGPT, we release AMBLE, a benchmark comprising four real-world archival tasks. Evaluation on AMBLE shows that ArcGPT outperforms existing state-of-the-art models, marking a substantial step forward in effective archival data management. Ultimately, ArcGPT aims to better serve the archival community, aiding archivists in their crucial role of preserving and harnessing our collective information and knowledge.