Abstract:Significant progress has been made in spoken question answering (SQA) in recent years. However, many existing methods, including large audio language models, struggle with processing long audio. Follow the success of retrieval augmented generation, a speech-related retriever shows promising in help preprocessing long-form speech. But the performance of existing speech-related retrievers is lacking. To address this challenge, we propose CLSR, an end-to-end contrastive language-speech retriever that efficiently extracts question-relevant segments from long audio recordings for downstream SQA task. Unlike conventional speech-text contrastive models, CLSR incorporates an intermediate step that converts acoustic features into text-like representations prior to alignment, thereby more effectively bridging the gap between modalities. Experimental results across four cross-modal retrieval datasets demonstrate that CLSR surpasses both end-to-end speech related retrievers and pipeline approaches combining speech recognition with text retrieval, providing a robust foundation for advancing practical long-form SQA applications.
Abstract:Task-agnostic prompt compression leverages the redundancy in natural language to reduce computational overhead and enhance information density within prompts, especially in long-context scenarios. Existing methods predominantly rely on information entropy as the metric to compress lexical units, aiming to achieve minimal information loss. However, these approaches overlook two critical aspects: (i) the importance of attention-critical tokens at the algorithmic level, and (ii) shifts in information entropy during the compression process. Motivated by these challenges, we propose a dynamic attention-aware approach for task-agnostic prompt compression (DAC). This approach effectively integrates entropy and attention information, dynamically sensing entropy shifts during compression to achieve fine-grained prompt compression. Extensive experiments across various domains, including LongBench, GSM8K, and BBH, show that DAC consistently yields robust and substantial improvements across a diverse range of tasks and LLMs, offering compelling evidence of its efficacy.
Abstract:Large Language Models (LLMs) have achieved impressive accomplishments in recent years. However, the increasing memory consumption of KV cache has possessed a significant challenge to the inference system. Eviction methods have revealed the inherent redundancy within the KV cache, demonstrating its potential for reduction, particularly in deeper layers. However, KV cache reduction for shallower layers has been found to be insufficient. Based on our observation that, the KV cache exhibits a high degree of similarity. Based on this observation, we proposed a novel KV cache reduction method, SpindleKV, which balances both shallow and deep layers. For deep layers, we employ an attention weight based eviction method, while for shallow layers, we apply a codebook based replacement approach which is learnt by similarity and merging policy. Moreover, SpindleKV addressed the Grouped-Query Attention (GQA) dilemma faced by other attention based eviction methods. Experiments on two common benchmarks with three different LLMs shown that SpindleKV obtained better KV cache reduction effect compared to baseline methods, while preserving similar or even better model performance.