Sherman
Abstract:Low Earth orbit (LEO) satellite networks have shown strategic superiority in maritime communications, assisting in establishing signal transmissions from shore to ship through space-based links. Traditional performance modeling based on multiple circular orbits is challenging to characterize large-scale LEO satellite constellations, thus requiring a tractable approach to accurately evaluate the network performance. In this paper, we propose a theoretical framework for an LEO satellite-aided shore-to-ship communication network (LEO-SSCN), where LEO satellites are distributed as a binomial point process (BPP) on a specific spherical surface. The framework aims to obtain the end-to-end transmission performance by considering signal transmissions through either a marine link or a space link subject to Rician or Shadowed Rician fading, respectively. Due to the indeterminate position of the serving satellite, accurately modeling the distance from the serving satellite to the destination ship becomes intractable. To address this issue, we propose a distance approximation approach. Then, by approximation and incorporating a threshold-based communication scheme, we leverage stochastic geometry to derive analytical expressions of end-to-end transmission success probability and average transmission rate capacity. Extensive numerical results verify the accuracy of the analysis and demonstrate the effect of key parameters on the performance of LEO-SSCN.
Abstract:In this paper, we propose a novel intelligent polarforming antenna (IPA) to achieve cost-effective wireless sensing and communication. Specifically, the IPA can enable polarforming by adaptively controlling the antenna's polarization electrically as well as its position/rotation mechanically, so as to effectively exploit polarization and spatial diversity to reconfigure wireless channels for improving sensing and communication performance. We study an IPA-enhanced integrated sensing and communication (ISAC) system that utilizes user location sensing to facilitate communication between an IPA-equipped base station (BS) and IPA-equipped users. First, we model the IPA channel in terms of transceiver antenna polarforming vectors and antenna positions/rotations. We then propose a two-timescale ISAC protocol, where in the slow timescale, user localization is first performed, followed by the optimization of the BS antennas' positions and rotations based on the sensed user locations; subsequently, in the fast timescale, transceiver polarforming is adapted to cater to the instantaneous channel state information (CSI), with the optimized BS antennas' positions and rotations. We propose a new polarforming-based user localization method that uses a structured time-domain pattern of pilot-polarforming vectors to extract the common stable components in the IPA channel across different polarizations based on the parallel factor (PARAFAC) tensor model. Moreover, we maximize the achievable average sum-rate of users by jointly optimizing the fast-timescale transceiver polarforming, including phase shifts and amplitude variations, along with the slow-timescale antenna rotations and positions at the BS. Simulation results validate the effectiveness of polarforming-based localization algorithm and demonstrate the performance advantages of polarforming, antenna placement, and their joint design.
Abstract:In this work, we study a six-dimensional movable antenna (6DMA)-enhanced Terahertz (THz) network that supports a large number of users with a few antennas by controlling the three-dimensional (3D) positions and 3D rotations of antenna surfaces/subarrays at the base station (BS). However, the short wavelength of THz signals combined with a large 6DMA movement range extends the near-field region. As a result, a user can be in the far-field region relative to the antennas on one 6DMA surface, while simultaneously residing in the near-field region relative to other 6DMA surfaces. Moreover, 6DMA THz channel estimation suffers from increased computational complexity and pilot overhead due to uneven power distribution across the large number of candidate position-rotation pairs, as well as the limited number of radio frequency (RF) chains in THz bands. To address these issues, we propose an efficient hybrid-field generalized 6DMA THz channel model, which accounts for planar wave propagation within individual 6DMA surfaces and spherical waves among different 6DMA surfaces. Furthermore, we propose a low-overhead channel estimation algorithm that leverages directional sparsity to construct a complete channel map for all potential antenna position-rotation pairs. Numerical results show that the proposed hybrid-field channel model achieves a sum rate close to that of the ground-truth near-field channel model and confirm that the channel estimation method yields accurate results with low complexity.




Abstract:In this article, we present a novel user-centric service provision for immersive communications (IC) in 6G to deal with the uncertainty of individual user behaviors while satisfying unique requirements on the quality of multi-sensory experience. To this end, we propose a data-oriented approach for network resource management, featuring personalized data management that can support network modeling tailored to different user demands. Our approach leverages the digital twin (DT) technique as a key enabler. Particularly, a DT is established for each user, and the data attributes in the DT are customized based on the characteristics of the user. The DT functions, corresponding to various data operations, are customized in the development, evaluation, and update of network models to meet unique user demands. A trace-driven case study demonstrates the effectiveness of our approach in achieving user-centric IC and the significance of personalized data management in 6G.




Abstract:To accommodate high network dynamics in real-time cooperative perception (CP), reinforcement learning (RL) based adaptive CP schemes have been proposed, to allow adaptive switchings between CP and stand-alone perception modes among connected and autonomous vehicles. The traditional offline-training online-execution RL framework suffers from performance degradation under nonstationary network conditions. To achieve fast and efficient model adaptation, we formulate a set of Markov decision processes for adaptive CP decisions in each stationary local vehicular network (LVN). A meta RL solution is proposed, which trains a meta RL model that captures the general features among LVNs, thus facilitating fast model adaptation for each LVN with the meta RL model as an initial point. Simulation results show the superiority of meta RL in terms of the convergence speed without reward degradation. The impact of the customization level of meta models on the model adaptation performance has also been evaluated.
Abstract:This paper explores the integration of active machine learning (ML) for 6G networks, an area that remains under-explored yet holds potential. Unlike passive ML systems, active ML can be made to interact with the network environment. It actively selects informative and representative data points for training, thereby reducing the volume of data needed while accelerating the learning process. While active learning research mainly focuses on data annotation, we call for a network-centric active learning framework that considers both annotation (i.e., what is the label) and data acquisition (i.e., which and how many samples to collect). Moreover, we explore the synergy between generative artificial intelligence (AI) and active learning to overcome existing limitations in both active learning and generative AI. This paper also features a case study on a mmWave throughput prediction problem to demonstrate the practical benefits and improved performance of active learning for 6G networks. Furthermore, we discuss how the implications of active learning extend to numerous 6G network use cases. We highlight the potential of active learning based 6G networks to enhance computational efficiency, data annotation and acquisition efficiency, adaptability, and overall network intelligence. We conclude with a discussion on challenges and future research directions for active learning in 6G networks, including development of novel query strategies, distributed learning integration, and inclusion of human- and machine-in-the-loop learning.




Abstract:To maintain high perception performance among connected and autonomous vehicles (CAVs), in this paper, we propose an accuracy-aware and resource-efficient raw-level cooperative sensing and computing scheme among CAVs and road-side infrastructure. The scheme enables fined-grained partial raw sensing data selection, transmission, fusion, and processing in per-object granularity, by exploiting the parallelism among object classification subtasks associated with each object. A supervised learning model is trained to capture the relationship between the object classification accuracy and the data quality of selected object sensing data, facilitating accuracy-aware sensing data selection. We formulate an optimization problem for joint sensing data selection, subtask placement and resource allocation among multiple object classification subtasks, to minimize the total resource cost while satisfying the delay and accuracy requirements. A genetic algorithm based iterative solution is proposed for the optimization problem. Simulation results demonstrate the accuracy awareness and resource efficiency achieved by the proposed cooperative sensing and computing scheme, in comparison with benchmark solutions.
Abstract:Cooperative perception (CP) is a key technology to facilitate consistent and accurate situational awareness for connected and autonomous vehicles (CAVs). To tackle the network resource inefficiency issue in traditional broadcast-based CP, unicast-based CP has been proposed to associate CAV pairs for cooperative perception via vehicle-to-vehicle transmission. In this paper, we investigate unicast-based CP among CAV pairs. With the consideration of dynamic perception workloads and channel conditions due to vehicle mobility and dynamic radio resource availability, we propose an adaptive cooperative perception scheme for CAV pairs in a mixed-traffic autonomous driving scenario with both CAVs and human-driven vehicles. We aim to determine when to switch between cooperative perception and stand-alone perception for each CAV pair, and allocate communication and computing resources to cooperative CAV pairs for maximizing the computing efficiency gain under perception task delay requirements. A model-assisted multi-agent reinforcement learning (MARL) solution is developed, which integrates MARL for an adaptive CAV cooperation decision and an optimization model for communication and computing resource allocation. Simulation results demonstrate the effectiveness of the proposed scheme in achieving high computing efficiency gain, as compared with benchmark schemes.




Abstract:In this paper, we present a novel content caching and delivery approach for mobile virtual reality (VR) video streaming. The proposed approach aims to maximize VR video streaming performance, i.e., minimizing video frame missing rate, by proactively caching popular VR video chunks and adaptively scheduling computing resources at an edge server based on user and network dynamics. First, we design a scalable content placement scheme for deciding which video chunks to cache at the edge server based on tradeoffs between computing and caching resource consumption. Second, we propose a machine learning-assisted VR video delivery scheme, which allocates computing resources at the edge server to satisfy video delivery requests from multiple VR headsets. A Whittle index-based method is adopted to reduce the video frame missing rate by identifying network and user dynamics with low signaling overhead. Simulation results demonstrate that the proposed approach can significantly improve VR video streaming performance over conventional caching and computing resource scheduling strategies.




Abstract:While network slicing has become a prevalent approach to service differentiation, radio access network (RAN) slicing remains challenging due to the need of substantial adaptivity and flexibility to cope with the highly dynamic network environment in RANs. In this paper, we develop a slicing-based resource management framework for a two-tier RAN to support multiple services with different quality of service (QoS) requirements. The developed framework focuses on base station (BS) service coverage (SC) and interference management for multiple slices, each of which corresponds to a service. New designs are introduced in the spatial, temporal, and slice dimensions to cope with spatiotemporal variations in data traffic, balance adaptivity and overhead of resource management, and enhance flexibility in service differentiation. Based on the proposed framework, an energy efficiency maximization problem is formulated, and an artificial intelligence (AI)-assisted approach is proposed to solve the problem. Specifically, a deep unsupervised learning-assisted algorithm is proposed for searching the optimal SC of the BSs, and an optimization-based analytical solution is found for managing interference among BSs. Simulation results under different data traffic distributions demonstrate that our proposed slicing-based resource management framework, empowered by the AI-assisted approach, outperforms the benchmark frameworks and achieves a close-to-optimal performance in energy efficiency.