University of Oxford
Abstract:Randomized smoothing is a recent technique that achieves state-of-art performance in training certifiably robust deep neural networks. While the smoothing family of distributions is often connected to the choice of the norm used for certification, the parameters of the distributions are always set as global hyper parameters independent of the input data on which a network is certified. In this work, we revisit Gaussian randomized smoothing where we show that the variance of the Gaussian distribution can be optimized at each input so as to maximize the certification radius for the construction of the smoothed classifier. This new approach is generic, parameter-free, and easy to implement. In fact, we show that our data dependent framework can be seamlessly incorporated into 3 randomized smoothing approaches, leading to consistent improved certified accuracy. When this framework is used in the training routine of these approaches followed by a data dependent certification, we get 9% and 6% improvement over the certified accuracy of the strongest baseline for a radius of 0.5 on CIFAR10 and ImageNet, respectively.
Abstract:Most recently developed approaches to cooperative multi-agent reinforcement learning in the \emph{centralized training with decentralized execution} setting involve estimating a centralized, joint value function. In this paper, we demonstrate that, despite its various theoretical shortcomings, Independent PPO (IPPO), a form of independent learning in which each agent simply estimates its local value function, can perform just as well as or better than state-of-the-art joint learning approaches on popular multi-agent benchmark suite SMAC with little hyperparameter tuning. We also compare IPPO to several variants; the results suggest that IPPO's strong performance may be due to its robustness to some forms of environment non-stationarity.
Abstract:We propose a novel lightweight generative adversarial network for efficient image manipulation using natural language descriptions. To achieve this, a new word-level discriminator is proposed, which provides the generator with fine-grained training feedback at word-level, to facilitate training a lightweight generator that has a small number of parameters, but can still correctly focus on specific visual attributes of an image, and then edit them without affecting other contents that are not described in the text. Furthermore, thanks to the explicit training signal related to each word, the discriminator can also be simplified to have a lightweight structure. Compared with the state of the art, our method has a much smaller number of parameters, but still achieves a competitive manipulation performance. Extensive experimental results demonstrate that our method can better disentangle different visual attributes, then correctly map them to corresponding semantic words, and thus achieve a more accurate image modification using natural language descriptions.
Abstract:In continual learning (CL), a learner is faced with a sequence of tasks, arriving one after the other, and the goal is to remember all the tasks once the continual learning experience is finished. The prior art in CL uses episodic memory, parameter regularization or extensible network structures to reduce interference among tasks, but in the end, all the approaches learn different tasks in a joint vector space. We believe this invariably leads to interference among different tasks. We propose to learn tasks in different (low-rank) vector subspaces that are kept orthogonal to each other in order to minimize interference. Further, to keep the gradients of different tasks coming from these subspaces orthogonal to each other, we learn isometric mappings by posing network training as an optimization problem over the Stiefel manifold. To the best of our understanding, we report, for the first time, strong results over experience-replay baseline with and without memory on standard classification benchmarks in continual learning. The code is made publicly available.
Abstract:We present a novel Bipartite Graph Reasoning GAN (BiGraphGAN) for the challenging person image generation task. The proposed graph generator mainly consists of two novel blocks that aim to model the pose-to-pose and pose-to-image relations, respectively. Specifically, the proposed Bipartite Graph Reasoning (BGR) block aims to reason the crossing long-range relations between the source pose and the target pose in a bipartite graph, which mitigates some challenges caused by pose deformation. Moreover, we propose a new Interaction-and-Aggregation (IA) block to effectively update and enhance the feature representation capability of both person's shape and appearance in an interactive way. Experiments on two challenging and public datasets, i.e., Market-1501 and DeepFashion, show the effectiveness of the proposed BiGraphGAN in terms of objective quantitative scores and subjective visual realness. The source code and trained models are available at https://github.com/Ha0Tang/BiGraphGAN.
Abstract:Simulation is increasingly being used for generating large labelled datasets in many machine learning problems. Recent methods have focused on adjusting simulator parameters with the goal of maximising accuracy on a validation task, usually relying on REINFORCE-like gradient estimators. However these approaches are very expensive as they treat the entire data generation, model training, and validation pipeline as a black-box and require multiple costly objective evaluations at each iteration. We propose an efficient alternative for optimal synthetic data generation, based on a novel differentiable approximation of the objective. This allows us to optimize the simulator, which may be non-differentiable, requiring only one objective evaluation at each iteration with a little overhead. We demonstrate on a state-of-the-art photorealistic renderer that the proposed method finds the optimal data distribution faster (up to $50\times$), with significantly reduced training data generation (up to $30\times$) and better accuracy ($+8.7\%$) on real-world test datasets than previous methods.
Abstract:We propose a novel Generative Adversarial Network (XingGAN or CrossingGAN) for person image generation tasks, i.e., translating the pose of a given person to a desired one. The proposed Xing generator consists of two generation branches that model the person's appearance and shape information, respectively. Moreover, we propose two novel blocks to effectively transfer and update the person's shape and appearance embeddings in a crossing way to mutually improve each other, which has not been considered by any other existing GAN-based image generation work. Extensive experiments on two challenging datasets, i.e., Market-1501 and DeepFashion, demonstrate that the proposed XingGAN advances the state-of-the-art performance both in terms of objective quantitative scores and subjective visual realness. The source code and trained models are available at https://github.com/Ha0Tang/XingGAN.
Abstract:The ability to quickly solve a wide range of real-world tasks requires a commonsense understanding of the world. Yet, how to best extract such knowledge from natural language corpora and integrate it with reinforcement learning (RL) agents remains an open challenge. This is partly due to the lack of lightweight simulation environments that sufficiently reflect the semantics of the real world and provide knowledge sources grounded with respect to observations in an RL environment. To better enable research on agents making use of commonsense knowledge, we propose WordCraft, an RL environment based on Little Alchemy 2. This lightweight environment is fast to run and built upon entities and relations inspired by real-world semantics. We evaluate several representation learning methods on this new benchmark and propose a new method for integrating knowledge graphs with an RL agent.
Abstract:Recent studies have shown that skeletonization (pruning parameters) of networks at initialization provides all the practical benefits of sparsity both at inference and training time, while only marginally degrading their performance. However, we observe that beyond a certain level of sparsity (approx 95%), these approaches fail to preserve the network performance, and to our surprise, in many cases perform even worse than trivial random pruning. To this end, we propose to find a skeletonized network with maximum foresight connection sensitivity (FORCE). Intuitively, out of all possible sub-networks, we propose to find the one whose connections would have a maximum impact on the loss when perturbed. Our approximate solution to maximize the FORCE, progressively prunes connections of a given network at initialization. This allows parameters that were unimportant at earlier stages of skeletonization to become important at later stages. In many cases, our approach enables us to remove up to 99.9% parameters, while keeping networks trainable and providing significantly better performance than recent approaches. We demonstrate the effectiveness of our approach at various levels of sparsity (from medium to extreme) through extensive experiments and analysis. Code can be found in https://github.com/naver/force.
Abstract:We investigate two causes for adversarial vulnerability in deep neural networks: bad data and (poorly) trained models. When trained with SGD, deep neural networks essentially achieve zero training error, even in the presence of label noise, while also exhibiting good generalization on natural test data, something referred to as benign overfitting [2, 10]. However, these models are vulnerable to adversarial attacks. We identify label noise as one of the causes for adversarial vulnerability, and provide theoretical and empirical evidence in support of this. Surprisingly, we find several instances of label noise in datasets such as MNIST and CIFAR, and that robustly trained models incur training error on some of these, i.e. they don't fit the noise. However, removing noisy labels alone does not suffice to achieve adversarial robustness. Standard training procedures bias neural networks towards learning "simple" classification boundaries, which may be less robust than more complex ones. We observe that adversarial training does produce more complex decision boundaries. We conjecture that in part the need for complex decision boundaries arises from sub-optimal representation learning. By means of simple toy examples, we show theoretically how the choice of representation can drastically affect adversarial robustness.