Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Scalable Evaluation of Multi-Agent Reinforcement Learning with Melting Pot


Jul 14, 2021
Joel Z. Leibo, Edgar Duéñez-Guzmán, Alexander Sasha Vezhnevets, John P. Agapiou, Peter Sunehag, Raphael Koster, Jayd Matyas, Charles Beattie, Igor Mordatch, Thore Graepel

* In International Conference on Machine Learning 2021 (pp. 6187-6199). PMLR 
* Accepted to ICML 2021 and presented as a long talk; 33 pages; 9 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning to Incentivize Other Learning Agents


Jun 10, 2020
Jiachen Yang, Ang Li, Mehrdad Farajtabar, Peter Sunehag, Edward Hughes, Hongyuan Zha

* 19 pages, 11 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Malthusian Reinforcement Learning


Dec 17, 2018
Joel Z. Leibo, Julien Perolat, Edward Hughes, Steven Wheelwright, Adam H. Marblestone, Edgar Duéñez-Guzmán, Peter Sunehag, Iain Dunning, Thore Graepel

* 9 pages, 2 tables, 4 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Value-Decomposition Networks For Cooperative Multi-Agent Learning


Jun 16, 2017
Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, Thore Graepel


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Reinforcement Learning in Large Discrete Action Spaces


Apr 04, 2016
Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, Ben Coppin


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Reinforcement Learning with Attention for Slate Markov Decision Processes with High-Dimensional States and Actions


Dec 16, 2015
Peter Sunehag, Richard Evans, Gabriel Dulac-Arnold, Yori Zwols, Daniel Visentin, Ben Coppin


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

The Sample-Complexity of General Reinforcement Learning


Aug 22, 2013
Tor Lattimore, Marcus Hutter, Peter Sunehag

* 16 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

On Nicod's Condition, Rules of Induction and the Raven Paradox


Jul 16, 2013
Hadi Mohasel Afshar, Peter Sunehag

* On raven paradox, Nicod's condition, projectability, induction 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Concentration and Confidence for Discrete Bayesian Sequence Predictors


Jun 29, 2013
Tor Lattimore, Marcus Hutter, Peter Sunehag

* 17 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Optimistic Agents are Asymptotically Optimal


Sep 29, 2012
Peter Sunehag, Marcus Hutter

* Proc. 25th Australasian Joint Conference on Artificial Intelligence (AusAI 2012) 15-26 
* 13 LaTeX pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>