Transformer Hawkes process models have shown to be successful in modeling event sequence data. However, most of the existing training methods rely on maximizing the likelihood of event sequences, which involves calculating some intractable integral. Moreover, the existing methods fail to provide uncertainty quantification for model predictions, e.g., confidence intervals for the predicted event's arrival time. To address these issues, we propose SMURF-THP, a score-based method for learning Transformer Hawkes process and quantifying prediction uncertainty. Specifically, SMURF-THP learns the score function of events' arrival time based on a score-matching objective that avoids the intractable computation. With such a learned score function, we can sample arrival time of events from the predictive distribution. This naturally allows for the quantification of uncertainty by computing confidence intervals over the generated samples. We conduct extensive experiments in both event type prediction and uncertainty quantification of arrival time. In all the experiments, SMURF-THP outperforms existing likelihood-based methods in confidence calibration while exhibiting comparable prediction accuracy.
Spatio-temporal point processes (STPPs) are potent mathematical tools for modeling and predicting events with both temporal and spatial features. Despite their versatility, most existing methods for learning STPPs either assume a restricted form of the spatio-temporal distribution, or suffer from inaccurate approximations of the intractable integral in the likelihood training objective. These issues typically arise from the normalization term of the probability density function. Moreover, current techniques fail to provide uncertainty quantification for model predictions, such as confidence intervals for the predicted event's arrival time and confidence regions for the event's location, which is crucial given the considerable randomness of the data. To tackle these challenges, we introduce SMASH: a Score MAtching-based pSeudolikeliHood estimator for learning marked STPPs with uncertainty quantification. Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of marked STPPs through score-matching and offers uncertainty quantification for the predicted event time, location and mark by computing confidence regions over the generated samples. The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
Backdoor attacks are serious security threats to machine learning models where an adversary can inject poisoned samples into the training set, causing a backdoored model which predicts poisoned samples with particular triggers to particular target classes, while behaving normally on benign samples. In this paper, we explore the task of purifying a backdoored model using a small clean dataset. By establishing the connection between backdoor risk and adversarial risk, we derive a novel upper bound for backdoor risk, which mainly captures the risk on the shared adversarial examples (SAEs) between the backdoored model and the purified model. This upper bound further suggests a novel bi-level optimization problem for mitigating backdoor using adversarial training techniques. To solve it, we propose Shared Adversarial Unlearning (SAU). Specifically, SAU first generates SAEs, and then, unlearns the generated SAEs such that they are either correctly classified by the purified model and/or differently classified by the two models, such that the backdoor effect in the backdoored model will be mitigated in the purified model. Experiments on various benchmark datasets and network architectures show that our proposed method achieves state-of-the-art performance for backdoor defense.
Recent studies have demonstrated the susceptibility of deep neural networks to backdoor attacks. Given a backdoored model, its prediction of a poisoned sample with trigger will be dominated by the trigger information, though trigger information and benign information coexist. Inspired by the mechanism of the optical polarizer that a polarizer could pass light waves with particular polarizations while filtering light waves with other polarizations, we propose a novel backdoor defense method by inserting a learnable neural polarizer into the backdoored model as an intermediate layer, in order to purify the poisoned sample via filtering trigger information while maintaining benign information. The neural polarizer is instantiated as one lightweight linear transformation layer, which is learned through solving a well designed bi-level optimization problem, based on a limited clean dataset. Compared to other fine-tuning-based defense methods which often adjust all parameters of the backdoored model, the proposed method only needs to learn one additional layer, such that it is more efficient and requires less clean data. Extensive experiments demonstrate the effectiveness and efficiency of our method in removing backdoors across various neural network architectures and datasets, especially in the case of very limited clean data.
Over-generalization is a thorny issue in cognitive science, where people may become overly cautious due to past experiences. Agents in multi-agent reinforcement learning (MARL) also have been found to suffer relative over-generalization (RO) as people do and stuck to sub-optimal cooperation. Recent methods have shown that assigning reasoning ability to agents can mitigate RO algorithmically and empirically, but there has been a lack of theoretical understanding of RO, let alone designing provably RO-free methods. This paper first proves that RO can be avoided when the MARL method satisfies a consistent reasoning requirement under certain conditions. Then we introduce a novel reasoning framework, called negotiated reasoning, that first builds the connection between reasoning and RO with theoretical justifications. After that, we propose an instantiated algorithm, Stein variational negotiated reasoning (SVNR), which uses Stein variational gradient descent to derive a negotiation policy that provably avoids RO in MARL under maximum entropy policy iteration. The method is further parameterized with neural networks for amortized learning, making computation efficient. Numerical experiments on many RO-challenged environments demonstrate the superiority and efficiency of SVNR compared to state-of-the-art methods in addressing RO.
The difficulty of appropriately assigning credit is particularly heightened in cooperative MARL with sparse reward, due to the concurrent time and structural scales involved. Automatic subgoal generation (ASG) has recently emerged as a viable MARL approach inspired by utilizing subgoals in intrinsically motivated reinforcement learning. However, end-to-end learning of complex task planning from sparse rewards without prior knowledge, undoubtedly requires massive training samples. Moreover, the diversity-promoting nature of existing ASG methods can lead to the "over-representation" of subgoals, generating numerous spurious subgoals of limited relevance to the actual task reward and thus decreasing the sample efficiency of the algorithm. To address this problem and inspired by the disentangled representation learning, we propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA), that prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning. Additionally, SAMA incorporates language-grounded RL to train each agent's subgoal-conditioned policy. SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods, as evidenced by its performance on two challenging sparse-reward tasks, Overcooked and MiniRTS.
Reinforcement learning (RL) mimics how humans and animals interact with the environment. The setting is somewhat idealized because, in actual tasks, other agents in the environment have their own goals and behave adaptively to the ego agent. To thrive in those environments, the agent needs to influence other agents so their actions become more helpful and less harmful. Research in computational economics distills two ways to influence others directly: by providing tangible goods (mechanism design) and by providing information (information design). This work investigates information design problems for a group of RL agents. The main challenges are two-fold. One is the information provided will immediately affect the transition of the agent trajectories, which introduces additional non-stationarity. The other is the information can be ignored, so the sender must provide information that the receivers are willing to respect. We formulate the Markov signaling game, and develop the notions of signaling gradient and the extended obedience constraints that address these challenges. Our algorithm is efficient on various mixed-motive tasks and provides further insights into computational economics. Our code is available at https://github.com/YueLin301/InformationDesignMARL.
Enhancing the diversity of policies is beneficial for robustness, exploration, and transfer in reinforcement learning (RL). In this paper, we aim to seek diverse policies in an under-explored setting, namely RL tasks with structured action spaces with the two properties of composability and local dependencies. The complex action structure, non-uniform reward landscape, and subtle hyperparameter tuning due to the properties of structured actions prevent existing approaches from scaling well. We propose a simple and effective RL method, Diverse Policy Optimization (DPO), to model the policies in structured action space as the energy-based models (EBM) by following the probabilistic RL framework. A recently proposed novel and powerful generative model, GFlowNet, is introduced as the efficient, diverse EBM-based policy sampler. DPO follows a joint optimization framework: the outer layer uses the diverse policies sampled by the GFlowNet to update the EBM-based policies, which supports the GFlowNet training in the inner layer. Experiments on ATSC and Battle benchmarks demonstrate that DPO can efficiently discover surprisingly diverse policies in challenging scenarios and substantially outperform existing state-of-the-art methods.
We study the fair regression problem under the notion of Mean Parity (MP) fairness, which requires the conditional mean of the learned function output to be constant with respect to the sensitive attributes. We address this problem by leveraging reproducing kernel Hilbert space (RKHS) to construct the functional space whose members are guaranteed to satisfy the fairness constraints. The proposed functional space suggests a closed-form solution for the fair regression problem that is naturally compatible with multiple sensitive attributes. Furthermore, by formulating the fairness-accuracy tradeoff as a relaxed fair regression problem, we derive a corresponding regression function that can be implemented efficiently and provides interpretable tradeoffs. More importantly, under some mild assumptions, the proposed method can be applied to regression problems with a covariance-based notion of fairness. Experimental results on benchmark datasets show the proposed methods achieve competitive and even superior performance compared with several state-of-the-art methods.
Social dilemmas can be considered situations where individual rationality leads to collective irrationality. The multi-agent reinforcement learning community has leveraged ideas from social science, such as social value orientations (SVO), to solve social dilemmas in complex cooperative tasks. In this paper, by first introducing the typical "division of labor or roles" mechanism in human society, we provide a promising solution for intertemporal social dilemmas (ISD) with SVOs. A novel learning framework, called Learning Roles with Emergent SVOs (RESVO), is proposed to transform the learning of roles into the social value orientation emergence, which is symmetrically solved by endowing agents with altruism to share rewards with other agents. An SVO-based role embedding space is then constructed by individual conditioning policies on roles with a novel rank regularizer and mutual information maximizer. Experiments show that RESVO achieves a stable division of labor and cooperation in ISDs with different complexity.