Abstract:Time series classification (TSC) is a core machine learning problem with broad applications. Recently there has been growing interest in repurposing large language models (LLMs) for TSC, motivated by their strong reasoning and generalization ability. Prior work has primarily focused on alignment strategies that explicitly map time series data into the textual domain; however, the choice of time series encoder architecture remains underexplored. In this work, we conduct an exploratory study of hybrid architectures that combine specialized time series encoders with a frozen LLM backbone. We evaluate a diverse set of encoder families, including Inception, convolutional, residual, transformer-based, and multilayer perceptron architectures, among which the Inception model is the only encoder architecture that consistently yields positive performance gains when integrated with an LLM backbone. Overall, this study highlights the impact of time series encoder choice in hybrid LLM architectures and points to Inception-based models as a promising direction for future LLM-driven time series learning.
Abstract:Recent reports claim that large language models (LLMs) now outperform elite humans in competitive programming. Drawing on knowledge from a group of medalists in international algorithmic contests, we revisit this claim, examining how LLMs differ from human experts and where limitations still remain. We introduce LiveCodeBench Pro, a benchmark composed of problems from Codeforces, ICPC, and IOI that are continuously updated to reduce the likelihood of data contamination. A team of Olympiad medalists annotates every problem for algorithmic categories and conducts a line-by-line analysis of failed model-generated submissions. Using this new data and benchmark, we find that frontier models still have significant limitations: without external tools, the best model achieves only 53% pass@1 on medium-difficulty problems and 0% on hard problems, domains where expert humans still excel. We also find that LLMs succeed at implementation-heavy problems but struggle with nuanced algorithmic reasoning and complex case analysis, often generating confidently incorrect justifications. High performance appears largely driven by implementation precision and tool augmentation, not superior reasoning. LiveCodeBench Pro thus highlights the significant gap to human grandmaster levels, while offering fine-grained diagnostics to steer future improvements in code-centric LLM reasoning.