Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Prateek Mittal

PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier


Aug 20, 2021
Chong Xiang, Saeed Mahloujifar, Prateek Mittal


  Access Paper or Ask Questions

PatchGuard++: Efficient Provable Attack Detection against Adversarial Patches


Apr 26, 2021
Chong Xiang, Prateek Mittal

* ICLR 2021 Workshop on Security and Safety in Machine Learning Systems 

  Access Paper or Ask Questions

Improving Adversarial Robustness Using Proxy Distributions


Apr 19, 2021
Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chiang, Prateek Mittal

* 24 pages, 5 figures, 4 tables 

  Access Paper or Ask Questions

Lower Bounds on Cross-Entropy Loss in the Presence of Test-time Adversaries


Apr 16, 2021
Arjun Nitin Bhagoji, Daniel Cullina, Vikash Sehwag, Prateek Mittal

* 16 pages, 12 figures; Under review 

  Access Paper or Ask Questions

SSD: A Unified Framework for Self-Supervised Outlier Detection


Mar 22, 2021
Vikash Sehwag, Mung Chiang, Prateek Mittal

* ICLR 2021 

  Access Paper or Ask Questions

DetectorGuard: Provably Securing Object Detectors against Localized Patch Hiding Attacks


Feb 05, 2021
Chong Xiang, Prateek Mittal


  Access Paper or Ask Questions

A System for Efficiently Hunting for Cyber Threats in Computer Systems Using Threat Intelligence


Jan 17, 2021
Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Haoyuan Liu, Zheng Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R. Kulkarni, Dawn Song

* Accepted paper at ICDE 2021 demonstrations track. arXiv admin note: substantial text overlap with arXiv:2010.13637 

  Access Paper or Ask Questions

Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence


Oct 26, 2020
Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Zheng Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R. Kulkarni, Dawn Song


  Access Paper or Ask Questions

RobustBench: a standardized adversarial robustness benchmark


Oct 19, 2020
Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion, Mung Chiang, Prateek Mittal, Matthias Hein


  Access Paper or Ask Questions

A Critical Evaluation of Open-World Machine Learning


Jul 08, 2020
Liwei Song, Vikash Sehwag, Arjun Nitin Bhagoji, Prateek Mittal

* Presented at the ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning 

  Access Paper or Ask Questions

Time for a Background Check! Uncovering the impact of Background Features on Deep Neural Networks


Jun 24, 2020
Vikash Sehwag, Rajvardhan Oak, Mung Chiang, Prateek Mittal

* 6 pages, 5 figures 

  Access Paper or Ask Questions

PatchGuard: Provable Defense against Adversarial Patches Using Masks on Small Receptive Fields


Jun 08, 2020
Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, Prateek Mittal


  Access Paper or Ask Questions

FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning


Apr 05, 2020
Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, Tal Rabin


  Access Paper or Ask Questions

Systematic Evaluation of Privacy Risks of Machine Learning Models


Mar 24, 2020
Liwei Song, Prateek Mittal

* code is available at https://github.com/inspire-group/membership-inference-evaluation 

  Access Paper or Ask Questions

Towards Probabilistic Verification of Machine Unlearning


Mar 09, 2020
David Marco Sommer, Liwei Song, Sameer Wagh, Prateek Mittal

* code is available at https://github.com/inspire-group/unlearning-verification 

  Access Paper or Ask Questions

On Pruning Adversarially Robust Neural Networks


Feb 24, 2020
Vikash Sehwag, Shiqi Wang, Prateek Mittal, Suman Jana

* 19 pages, 14 figures, 8 tables 

  Access Paper or Ask Questions

Advances and Open Problems in Federated Learning


Dec 10, 2019
Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao


  Access Paper or Ask Questions

Lower Bounds on Adversarial Robustness from Optimal Transport


Oct 30, 2019
Arjun Nitin Bhagoji, Daniel Cullina, Prateek Mittal

* Accepted for the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); 18 pages, 5 figures 

  Access Paper or Ask Questions

Towards Compact and Robust Deep Neural Networks


Jun 14, 2019
Vikash Sehwag, Shiqi Wang, Prateek Mittal, Suman Jana

* 14 pages, 9 figures, 7 tables 

  Access Paper or Ask Questions

Privacy Risks of Securing Machine Learning Models against Adversarial Examples


May 27, 2019
Liwei Song, Reza Shokri, Prateek Mittal


  Access Paper or Ask Questions

Better the Devil you Know: An Analysis of Evasion Attacks using Out-of-Distribution Adversarial Examples


May 05, 2019
Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cullina, Mung Chiang, Prateek Mittal

* 18 pages, 5 figures, 9 tables 

  Access Paper or Ask Questions

Robust Website Fingerprinting Through the Cache Occupancy Channel


Dec 11, 2018
Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal, Yossi Oren, Yuval Yarom


  Access Paper or Ask Questions

Analyzing Federated Learning through an Adversarial Lens


Nov 29, 2018
Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, Seraphin Calo

* 18 pages, 12 figures 

  Access Paper or Ask Questions

Partial Recovery of Erdős-Rényi Graph Alignment via $k$-Core Alignment


Nov 03, 2018
Daniel Cullina, Negar Kiyavash, Prateek Mittal, H. Vincent Poor


  Access Paper or Ask Questions

MVG Mechanism: Differential Privacy under Matrix-Valued Query


Oct 16, 2018
Thee Chanyaswad, Alex Dytso, H. Vincent Poor, Prateek Mittal

* Thee Chanyaswad, Alex Dytso, H. Vincent Poor, and Prateek Mittal. 2018. MVG Mechanism: Differential Privacy under Matrix-Valued Query. In 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS'18) 
* Appeared in CCS'18 

  Access Paper or Ask Questions

PAC-learning in the presence of evasion adversaries


Jun 06, 2018
Daniel Cullina, Arjun Nitin Bhagoji, Prateek Mittal

* 14 pages, 2 figures (minor changes to biblatex output) 

  Access Paper or Ask Questions

DARTS: Deceiving Autonomous Cars with Toxic Signs


May 31, 2018
Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, Prateek Mittal

* Submitted to ACM CCS 2018; Extended version of [1801.02780] Rogue Signs: Deceiving Traffic Sign Recognition with Malicious Ads and Logos 

  Access Paper or Ask Questions

Rogue Signs: Deceiving Traffic Sign Recognition with Malicious Ads and Logos


Mar 26, 2018
Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Prateek Mittal, Mung Chiang

* Extended abstract accepted for the 1st Deep Learning and Security Workshop; 5 pages, 4 figures 

  Access Paper or Ask Questions