Alert button
Picture for Paden Tomasello

Paden Tomasello

Alert button

SeamlessM4T-Massively Multilingual & Multimodal Machine Translation

Aug 23, 2023
Seamless Communication, Loïc Barrault, Yu-An Chung, Mariano Cora Meglioli, David Dale, Ning Dong, Paul-Ambroise Duquenne, Hady Elsahar, Hongyu Gong, Kevin Heffernan, John Hoffman, Christopher Klaiber, Pengwei Li, Daniel Licht, Jean Maillard, Alice Rakotoarison, Kaushik Ram Sadagopan, Guillaume Wenzek, Ethan Ye, Bapi Akula, Peng-Jen Chen, Naji El Hachem, Brian Ellis, Gabriel Mejia Gonzalez, Justin Haaheim, Prangthip Hansanti, Russ Howes, Bernie Huang, Min-Jae Hwang, Hirofumi Inaguma, Somya Jain, Elahe Kalbassi, Amanda Kallet, Ilia Kulikov, Janice Lam, Daniel Li, Xutai Ma, Ruslan Mavlyutov, Benjamin Peloquin, Mohamed Ramadan, Abinesh Ramakrishnan, Anna Sun, Kevin Tran, Tuan Tran, Igor Tufanov, Vish Vogeti, Carleigh Wood, Yilin Yang, Bokai Yu, Pierre Andrews, Can Balioglu, Marta R. Costa-jussà, Onur Celebi, Maha Elbayad, Cynthia Gao, Francisco Guzmán, Justine Kao, Ann Lee, Alexandre Mourachko, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang

What does it take to create the Babel Fish, a tool that can help individuals translate speech between any two languages? While recent breakthroughs in text-based models have pushed machine translation coverage beyond 200 languages, unified speech-to-speech translation models have yet to achieve similar strides. More specifically, conventional speech-to-speech translation systems rely on cascaded systems that perform translation progressively, putting high-performing unified systems out of reach. To address these gaps, we introduce SeamlessM4T, a single model that supports speech-to-speech translation, speech-to-text translation, text-to-speech translation, text-to-text translation, and automatic speech recognition for up to 100 languages. To build this, we used 1 million hours of open speech audio data to learn self-supervised speech representations with w2v-BERT 2.0. Subsequently, we created a multimodal corpus of automatically aligned speech translations. Filtered and combined with human-labeled and pseudo-labeled data, we developed the first multilingual system capable of translating from and into English for both speech and text. On FLEURS, SeamlessM4T sets a new standard for translations into multiple target languages, achieving an improvement of 20% BLEU over the previous SOTA in direct speech-to-text translation. Compared to strong cascaded models, SeamlessM4T improves the quality of into-English translation by 1.3 BLEU points in speech-to-text and by 2.6 ASR-BLEU points in speech-to-speech. Tested for robustness, our system performs better against background noises and speaker variations in speech-to-text tasks compared to the current SOTA model. Critically, we evaluated SeamlessM4T on gender bias and added toxicity to assess translation safety. Finally, all contributions in this work are open-sourced and accessible at https://github.com/facebookresearch/seamless_communication

Viaarxiv icon

Scaling Speech Technology to 1,000+ Languages

May 22, 2023
Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli

Figure 1 for Scaling Speech Technology to 1,000+ Languages
Figure 2 for Scaling Speech Technology to 1,000+ Languages
Figure 3 for Scaling Speech Technology to 1,000+ Languages
Figure 4 for Scaling Speech Technology to 1,000+ Languages

Expanding the language coverage of speech technology has the potential to improve access to information for many more people. However, current speech technology is restricted to about one hundred languages which is a small fraction of the over 7,000 languages spoken around the world. The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task. The main ingredients are a new dataset based on readings of publicly available religious texts and effectively leveraging self-supervised learning. We built pre-trained wav2vec 2.0 models covering 1,406 languages, a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models for the same number of languages, as well as a language identification model for 4,017 languages. Experiments show that our multilingual speech recognition model more than halves the word error rate of Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction of the labeled data.

Viaarxiv icon

Efficient Speech Representation Learning with Low-Bit Quantization

Dec 14, 2022
Ching-Feng Yeh, Wei-Ning Hsu, Paden Tomasello, Abdelrahman Mohamed

Figure 1 for Efficient Speech Representation Learning with Low-Bit Quantization
Figure 2 for Efficient Speech Representation Learning with Low-Bit Quantization
Figure 3 for Efficient Speech Representation Learning with Low-Bit Quantization

With the development of hardware for machine learning, newer models often come at the cost of both increased sizes and computational complexity. In effort to improve the efficiency for these models, we apply and investigate recent quantization techniques on speech representation learning models. The quantization techniques were evaluated on the SUPERB benchmark. On the ASR task, with aggressive quantization to 1 bit, we achieved 86.32% storage reduction (184.42 -> 25.23), 88% estimated runtime reduction (1.00 -> 0.12) with increased word error rate (7.06 -> 15.96). In comparison with DistillHuBERT which also aims for model compression, the 2-bit configuration yielded slightly smaller storage (35.84 vs. 46.98), better word error rate (12.68 vs. 13.37) and more efficient estimated runtime (0.15 vs. 0.73).

* 7 pages 
Viaarxiv icon

Continual Learning for On-Device Speech Recognition using Disentangled Conformers

Dec 13, 2022
Anuj Diwan, Ching-Feng Yeh, Wei-Ning Hsu, Paden Tomasello, Eunsol Choi, David Harwath, Abdelrahman Mohamed

Figure 1 for Continual Learning for On-Device Speech Recognition using Disentangled Conformers
Figure 2 for Continual Learning for On-Device Speech Recognition using Disentangled Conformers
Figure 3 for Continual Learning for On-Device Speech Recognition using Disentangled Conformers
Figure 4 for Continual Learning for On-Device Speech Recognition using Disentangled Conformers

Automatic speech recognition research focuses on training and evaluating on static datasets. Yet, as speech models are increasingly deployed on personal devices, such models encounter user-specific distributional shifts. To simulate this real-world scenario, we introduce LibriContinual, a continual learning benchmark for speaker-specific domain adaptation derived from LibriVox audiobooks, with data corresponding to 118 individual speakers and 6 train splits per speaker of different sizes. Additionally, current speech recognition models and continual learning algorithms are not optimized to be compute-efficient. We adapt a general-purpose training algorithm NetAug for ASR and create a novel Conformer variant called the DisConformer (Disentangled Conformer). This algorithm produces ASR models consisting of a frozen 'core' network for general-purpose use and several tunable 'augment' networks for speaker-specific tuning. Using such models, we propose a novel compute-efficient continual learning algorithm called DisentangledCL. Our experiments show that the DisConformer models significantly outperform baselines on general ASR i.e. LibriSpeech (15.58% rel. WER on test-other). On speaker-specific LibriContinual they significantly outperform trainable-parameter-matched baselines (by 20.65% rel. WER on test) and even match fully finetuned baselines in some settings.

* 8 pages, 2 figures. Submitted to ICASSP 2023 
Viaarxiv icon

Speech-to-Speech Translation For A Real-world Unwritten Language

Nov 11, 2022
Peng-Jen Chen, Kevin Tran, Yilin Yang, Jingfei Du, Justine Kao, Yu-An Chung, Paden Tomasello, Paul-Ambroise Duquenne, Holger Schwenk, Hongyu Gong, Hirofumi Inaguma, Sravya Popuri, Changhan Wang, Juan Pino, Wei-Ning Hsu, Ann Lee

Figure 1 for Speech-to-Speech Translation For A Real-world Unwritten Language
Figure 2 for Speech-to-Speech Translation For A Real-world Unwritten Language
Figure 3 for Speech-to-Speech Translation For A Real-world Unwritten Language
Figure 4 for Speech-to-Speech Translation For A Real-world Unwritten Language

We study speech-to-speech translation (S2ST) that translates speech from one language into another language and focuses on building systems to support languages without standard text writing systems. We use English-Taiwanese Hokkien as a case study, and present an end-to-end solution from training data collection, modeling choices to benchmark dataset release. First, we present efforts on creating human annotated data, automatically mining data from large unlabeled speech datasets, and adopting pseudo-labeling to produce weakly supervised data. On the modeling, we take advantage of recent advances in applying self-supervised discrete representations as target for prediction in S2ST and show the effectiveness of leveraging additional text supervision from Mandarin, a language similar to Hokkien, in model training. Finally, we release an S2ST benchmark set to facilitate future research in this field. The demo can be found at https://huggingface.co/spaces/facebook/Hokkien_Translation .

Viaarxiv icon

Deliberation Model for On-Device Spoken Language Understanding

Apr 04, 2022
Duc Le, Akshat Shrivastava, Paden Tomasello, Suyoun Kim, Aleksandr Livshits, Ozlem Kalinli, Michael L. Seltzer

Figure 1 for Deliberation Model for On-Device Spoken Language Understanding
Figure 2 for Deliberation Model for On-Device Spoken Language Understanding
Figure 3 for Deliberation Model for On-Device Spoken Language Understanding
Figure 4 for Deliberation Model for On-Device Spoken Language Understanding

We propose a novel deliberation-based approach to end-to-end (E2E) spoken language understanding (SLU), where a streaming automatic speech recognition (ASR) model produces the first-pass hypothesis and a second-pass natural language understanding (NLU) component generates the semantic parse by conditioning on both ASR's text and audio embeddings. By formulating E2E SLU as a generalized decoder, our system is able to support complex compositional semantic structures. Furthermore, the sharing of parameters between ASR and NLU makes the system especially suitable for resource-constrained (on-device) environments; our proposed approach consistently outperforms strong pipeline NLU baselines by 0.82% to 1.34% across various operating points on the spoken version of the TOPv2 dataset. We demonstrate that the fusion of text and audio features, coupled with the system's ability to rewrite the first-pass hypothesis, makes our approach more robust to ASR errors. Finally, we show that our approach can significantly reduce the degradation when moving from natural speech to synthetic speech training, but more work is required to make text-to-speech (TTS) a viable solution for scaling up E2E SLU.

* Submitted to INTERSPEECH 2022 
Viaarxiv icon

Generative Spoken Dialogue Language Modeling

Mar 30, 2022
Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi Adi, Wei-Ning Hsu, Ali Elkahky, Paden Tomasello, Robin Algayres, Benoit Sagot, Abdelrahman Mohamed, Emmanuel Dupoux

Figure 1 for Generative Spoken Dialogue Language Modeling
Figure 2 for Generative Spoken Dialogue Language Modeling
Figure 3 for Generative Spoken Dialogue Language Modeling
Figure 4 for Generative Spoken Dialogue Language Modeling

We introduce dGSLM, the first "textless" model able to generate audio samples of naturalistic spoken dialogues. It uses recent work on unsupervised spoken unit discovery coupled with a dual-tower transformer architecture with cross-attention trained on 2000 hours of two-channel raw conversational audio (Fisher dataset) without any text or labels. It is able to generate speech, laughter and other paralinguistic signals in the two channels simultaneously and reproduces naturalistic turn taking. Generation samples can be found at: https://speechbot.github.io/dgslm.

Viaarxiv icon

textless-lib: a Library for Textless Spoken Language Processing

Feb 15, 2022
Eugene Kharitonov, Jade Copet, Kushal Lakhotia, Tu Anh Nguyen, Paden Tomasello, Ann Lee, Ali Elkahky, Wei-Ning Hsu, Abdelrahman Mohamed, Emmanuel Dupoux, Yossi Adi

Figure 1 for textless-lib: a Library for Textless Spoken Language Processing
Figure 2 for textless-lib: a Library for Textless Spoken Language Processing
Figure 3 for textless-lib: a Library for Textless Spoken Language Processing
Figure 4 for textless-lib: a Library for Textless Spoken Language Processing

Textless spoken language processing research aims to extend the applicability of standard NLP toolset onto spoken language and languages with few or no textual resources. In this paper, we introduce textless-lib, a PyTorch-based library aimed to facilitate research in this research area. We describe the building blocks that the library provides and demonstrate its usability by discuss three different use-case examples: (i) speaker probing, (ii) speech resynthesis and compression, and (iii) speech continuation. We believe that textless-lib substantially simplifies research the textless setting and will be handful not only for speech researchers but also for the NLP community at large. The code, documentation, and pre-trained models are available at https://github.com/facebookresearch/textlesslib/ .

* The library is available here https://github.com/facebookresearch/textlesslib/ 
Viaarxiv icon

Flashlight: Enabling Innovation in Tools for Machine Learning

Jan 29, 2022
Jacob Kahn, Vineel Pratap, Tatiana Likhomanenko, Qiantong Xu, Awni Hannun, Jeff Cai, Paden Tomasello, Ann Lee, Edouard Grave, Gilad Avidov, Benoit Steiner, Vitaliy Liptchinsky, Gabriel Synnaeve, Ronan Collobert

Figure 1 for Flashlight: Enabling Innovation in Tools for Machine Learning
Figure 2 for Flashlight: Enabling Innovation in Tools for Machine Learning
Figure 3 for Flashlight: Enabling Innovation in Tools for Machine Learning
Figure 4 for Flashlight: Enabling Innovation in Tools for Machine Learning

As the computational requirements for machine learning systems and the size and complexity of machine learning frameworks increases, essential framework innovation has become challenging. While computational needs have driven recent compiler, networking, and hardware advancements, utilization of those advancements by machine learning tools is occurring at a slower pace. This is in part due to the difficulties involved in prototyping new computational paradigms with existing frameworks. Large frameworks prioritize machine learning researchers and practitioners as end users and pay comparatively little attention to systems researchers who can push frameworks forward -- we argue that both are equally important stakeholders. We introduce Flashlight, an open-source library built to spur innovation in machine learning tools and systems by prioritizing open, modular, customizable internals and state-of-the-art, research-ready models and training setups across a variety of domains. Flashlight allows systems researchers to rapidly prototype and experiment with novel ideas in machine learning computation and has low overhead, competing with and often outperforming other popular machine learning frameworks. We see Flashlight as a tool enabling research that can benefit widely used libraries downstream and bring machine learning and systems researchers closer together.

Viaarxiv icon