Alert button
Picture for Nicolas Boulanger-Lewandowski

Nicolas Boulanger-Lewandowski

Alert button

Universite de Montreal

Theano: A Python framework for fast computation of mathematical expressions

May 09, 2016
The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang

Figure 1 for Theano: A Python framework for fast computation of mathematical expressions
Figure 2 for Theano: A Python framework for fast computation of mathematical expressions
Figure 3 for Theano: A Python framework for fast computation of mathematical expressions
Figure 4 for Theano: A Python framework for fast computation of mathematical expressions

Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.

* 19 pages, 5 figures 
Viaarxiv icon

EmoNets: Multimodal deep learning approaches for emotion recognition in video

Mar 30, 2015
Samira Ebrahimi Kahou, Xavier Bouthillier, Pascal Lamblin, Caglar Gulcehre, Vincent Michalski, Kishore Konda, Sébastien Jean, Pierre Froumenty, Yann Dauphin, Nicolas Boulanger-Lewandowski, Raul Chandias Ferrari, Mehdi Mirza, David Warde-Farley, Aaron Courville, Pascal Vincent, Roland Memisevic, Christopher Pal, Yoshua Bengio

Figure 1 for EmoNets: Multimodal deep learning approaches for emotion recognition in video
Figure 2 for EmoNets: Multimodal deep learning approaches for emotion recognition in video
Figure 3 for EmoNets: Multimodal deep learning approaches for emotion recognition in video
Figure 4 for EmoNets: Multimodal deep learning approaches for emotion recognition in video

The task of the emotion recognition in the wild (EmotiW) Challenge is to assign one of seven emotions to short video clips extracted from Hollywood style movies. The videos depict acted-out emotions under realistic conditions with a large degree of variation in attributes such as pose and illumination, making it worthwhile to explore approaches which consider combinations of features from multiple modalities for label assignment. In this paper we present our approach to learning several specialist models using deep learning techniques, each focusing on one modality. Among these are a convolutional neural network, focusing on capturing visual information in detected faces, a deep belief net focusing on the representation of the audio stream, a K-Means based "bag-of-mouths" model, which extracts visual features around the mouth region and a relational autoencoder, which addresses spatio-temporal aspects of videos. We explore multiple methods for the combination of cues from these modalities into one common classifier. This achieves a considerably greater accuracy than predictions from our strongest single-modality classifier. Our method was the winning submission in the 2013 EmotiW challenge and achieved a test set accuracy of 47.67% on the 2014 dataset.

Viaarxiv icon

A Hybrid Recurrent Neural Network For Music Transcription

Nov 06, 2014
Siddharth Sigtia, Emmanouil Benetos, Nicolas Boulanger-Lewandowski, Tillman Weyde, Artur S. d'Avila Garcez, Simon Dixon

Figure 1 for A Hybrid Recurrent Neural Network For Music Transcription
Figure 2 for A Hybrid Recurrent Neural Network For Music Transcription
Figure 3 for A Hybrid Recurrent Neural Network For Music Transcription

We investigate the problem of incorporating higher-level symbolic score-like information into Automatic Music Transcription (AMT) systems to improve their performance. We use recurrent neural networks (RNNs) and their variants as music language models (MLMs) and present a generative architecture for combining these models with predictions from a frame level acoustic classifier. We also compare different neural network architectures for acoustic modeling. The proposed model computes a distribution over possible output sequences given the acoustic input signal and we present an algorithm for performing a global search for good candidate transcriptions. The performance of the proposed model is evaluated on piano music from the MAPS dataset and we observe that the proposed model consistently outperforms existing transcription methods.

Viaarxiv icon

Advances in Optimizing Recurrent Networks

Dec 14, 2012
Yoshua Bengio, Nicolas Boulanger-Lewandowski, Razvan Pascanu

Figure 1 for Advances in Optimizing Recurrent Networks
Figure 2 for Advances in Optimizing Recurrent Networks

After a more than decade-long period of relatively little research activity in the area of recurrent neural networks, several new developments will be reviewed here that have allowed substantial progress both in understanding and in technical solutions towards more efficient training of recurrent networks. These advances have been motivated by and related to the optimization issues surrounding deep learning. Although recurrent networks are extremely powerful in what they can in principle represent in terms of modelling sequences,their training is plagued by two aspects of the same issue regarding the learning of long-term dependencies. Experiments reported here evaluate the use of clipping gradients, spanning longer time ranges with leaky integration, advanced momentum techniques, using more powerful output probability models, and encouraging sparser gradients to help symmetry breaking and credit assignment. The experiments are performed on text and music data and show off the combined effects of these techniques in generally improving both training and test error.

Viaarxiv icon

High-dimensional sequence transduction

Dec 09, 2012
Nicolas Boulanger-Lewandowski, Yoshua Bengio, Pascal Vincent

Figure 1 for High-dimensional sequence transduction
Figure 2 for High-dimensional sequence transduction
Figure 3 for High-dimensional sequence transduction
Figure 4 for High-dimensional sequence transduction

We investigate the problem of transforming an input sequence into a high-dimensional output sequence in order to transcribe polyphonic audio music into symbolic notation. We introduce a probabilistic model based on a recurrent neural network that is able to learn realistic output distributions given the input and we devise an efficient algorithm to search for the global mode of that distribution. The resulting method produces musically plausible transcriptions even under high levels of noise and drastically outperforms previous state-of-the-art approaches on five datasets of synthesized sounds and real recordings, approximately halving the test error rate.

Viaarxiv icon

Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription

Jun 27, 2012
Nicolas Boulanger-Lewandowski, Yoshua Bengio, Pascal Vincent

Figure 1 for Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription
Figure 2 for Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription
Figure 3 for Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription
Figure 4 for Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription

We investigate the problem of modeling symbolic sequences of polyphonic music in a completely general piano-roll representation. We introduce a probabilistic model based on distribution estimators conditioned on a recurrent neural network that is able to discover temporal dependencies in high-dimensional sequences. Our approach outperforms many traditional models of polyphonic music on a variety of realistic datasets. We show how our musical language model can serve as a symbolic prior to improve the accuracy of polyphonic transcription.

* Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012) 
Viaarxiv icon

Deep Self-Taught Learning for Handwritten Character Recognition

Sep 18, 2010
Frédéric Bastien, Yoshua Bengio, Arnaud Bergeron, Nicolas Boulanger-Lewandowski, Thomas Breuel, Youssouf Chherawala, Moustapha Cisse, Myriam Côté, Dumitru Erhan, Jeremy Eustache, Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan Pascanu, Salah Rifai, Francois Savard, Guillaume Sicard

Figure 1 for Deep Self-Taught Learning for Handwritten Character Recognition
Figure 2 for Deep Self-Taught Learning for Handwritten Character Recognition
Figure 3 for Deep Self-Taught Learning for Handwritten Character Recognition
Figure 4 for Deep Self-Taught Learning for Handwritten Character Recognition

Recent theoretical and empirical work in statistical machine learning has demonstrated the importance of learning algorithms for deep architectures, i.e., function classes obtained by composing multiple non-linear transformations. Self-taught learning (exploiting unlabeled examples or examples from other distributions) has already been applied to deep learners, but mostly to show the advantage of unlabeled examples. Here we explore the advantage brought by {\em out-of-distribution examples}. For this purpose we developed a powerful generator of stochastic variations and noise processes for character images, including not only affine transformations but also slant, local elastic deformations, changes in thickness, background images, grey level changes, contrast, occlusion, and various types of noise. The out-of-distribution examples are obtained from these highly distorted images or by including examples of object classes different from those in the target test set. We show that {\em deep learners benefit more from out-of-distribution examples than a corresponding shallow learner}, at least in the area of handwritten character recognition. In fact, we show that they beat previously published results and reach human-level performance on both handwritten digit classification and 62-class handwritten character recognition.

Viaarxiv icon