Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Variational State-Space Models for Localisation and Dense 3D Mapping in 6 DoF

Jun 17, 2020
Atanas Mirchev, Baris Kayalibay, Patrick van der Smagt, Justin Bayer


  Access Paper or Ask Questions

Learning Flat Latent Manifolds with VAEs

Feb 12, 2020
Nutan Chen, Alexej Klushyn, Francesco Ferroni, Justin Bayer, Patrick van der Smagt

* 13 pages 

  Access Paper or Ask Questions

Variational Tracking and Prediction with Generative Disentangled State-Space Models

Oct 14, 2019
Adnan Akhundov, Maximilian Soelch, Justin Bayer, Patrick van der Smagt


  Access Paper or Ask Questions

Increasing the Generalisation Capacity of Conditional VAEs

Sep 10, 2019
Alexej Klushyn, Nutan Chen, Botond Cseke, Justin Bayer, Patrick van der Smagt


  Access Paper or Ask Questions

Increasing the Generalisaton Capacity of Conditional VAEs

Aug 23, 2019
Alexej Klushyn, Nutan Chen, Botond Cseke, Justin Bayer, Patrick van der Smagt


  Access Paper or Ask Questions

On Deep Set Learning and the Choice of Aggregations

Mar 18, 2019
Maximilian Soelch, Adnan Akhundov, Patrick van der Smagt, Justin Bayer


  Access Paper or Ask Questions

Bayesian Learning of Neural Network Architectures

Jan 27, 2019
Georgi Dikov, Patrick van der Smagt, Justin Bayer

* The 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019) 

  Access Paper or Ask Questions

Fast Approximate Geodesics for Deep Generative Models

Dec 19, 2018
Nutan Chen, Francesco Ferroni, Alexej Klushyn, Alexandros Paraschos, Justin Bayer, Patrick van der Smagt

* 10 pages 

  Access Paper or Ask Questions

Approximate Bayesian inference in spatial environments

May 18, 2018
Atanas Mirchev, Baris Kayalibay, Patrick van der Smagt, Justin Bayer


  Access Paper or Ask Questions

Metrics for Deep Generative Models

Feb 08, 2018
Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, Patrick van der Smagt

* The 21st International Conference on Artificial Intelligence and Statistics, 2018 
* Published on the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 2018 

  Access Paper or Ask Questions

Unsupervised Real-Time Control through Variational Empowerment

Oct 13, 2017
Maximilian Karl, Maximilian Soelch, Philip Becker-Ehmck, Djalel Benbouzid, Patrick van der Smagt, Justin Bayer


  Access Paper or Ask Questions

Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data

Mar 03, 2017
Maximilian Karl, Maximilian Soelch, Justin Bayer, Patrick van der Smagt

* Published as a conference paper at ICLR 2017 

  Access Paper or Ask Questions

Unsupervised preprocessing for Tactile Data

Jun 23, 2016
Maximilian Karl, Justin Bayer, Patrick van der Smagt


  Access Paper or Ask Questions

ML-based tactile sensor calibration: A universal approach

Jun 21, 2016
Maximilian Karl, Artur Lohrer, Dhananjay Shah, Frederik Diehl, Max Fiedler, Saahil Ognawala, Justin Bayer, Patrick van der Smagt


  Access Paper or Ask Questions

Variational Inference for On-line Anomaly Detection in High-Dimensional Time Series

Jun 14, 2016
Maximilian Soelch, Justin Bayer, Marvin Ludersdorfer, Patrick van der Smagt

* Accepted as workshop paper at ICLR 2016; accepted as workshop paper for anomaly detection workshop at ICML 2016 

  Access Paper or Ask Questions

Theano: A Python framework for fast computation of mathematical expressions

May 09, 2016
The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang

* 19 pages, 5 figures 

  Access Paper or Ask Questions

Efficient Empowerment

Sep 28, 2015
Maximilian Karl, Justin Bayer, Patrick van der Smagt


  Access Paper or Ask Questions

Fast Adaptive Weight Noise

Jul 19, 2015
Justin Bayer, Maximilian Karl, Daniela Korhammer, Patrick van der Smagt


  Access Paper or Ask Questions

Learning Stochastic Recurrent Networks

Mar 05, 2015
Justin Bayer, Christian Osendorfer

* Submitted to conference track of ICLR 2015 

  Access Paper or Ask Questions

Regularizing Recurrent Networks - On Injected Noise and Norm-based Methods

Oct 21, 2014
Saahil Ognawala, Justin Bayer


  Access Paper or Ask Questions

Variational inference of latent state sequences using Recurrent Networks

Sep 30, 2014
Justin Bayer, Christian Osendorfer

* This paper has been withdrawn due to a derivation/implementation error and the resulting invalidation of the results 

  Access Paper or Ask Questions

On Fast Dropout and its Applicability to Recurrent Networks

Mar 05, 2014
Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nutan Chen, Sebastian Urban, Patrick van der Smagt

* The experiments for the Penn Treebank corpus were erroneous and have been stripped from this version 

  Access Paper or Ask Questions

Learning Sequence Neighbourhood Metrics

Aug 22, 2013
Justin Bayer, Christian Osendorfer, Patrick van der Smagt

* Artificial Neural Networks and Machine Learning ICANN 2012 Springer Berlin Heidelberg 2012. 531-538 

  Access Paper or Ask Questions

Convolutional Neural Networks learn compact local image descriptors

Jun 02, 2013
Christian Osendorfer, Justin Bayer, Patrick van der Smagt


  Access Paper or Ask Questions

Unsupervised Feature Learning for low-level Local Image Descriptors

Apr 25, 2013
Christian Osendorfer, Justin Bayer, Sebastian Urban, Patrick van der Smagt


  Access Paper or Ask Questions