Abstract:Speech evaluation measures a learners oral proficiency using automatic models. Corpora for training such models often pose sparsity challenges given that there often is limited scored data from teachers, in addition to the score distribution across proficiency levels being often imbalanced among student cohorts. Automatic scoring is thus not robust when faced with under-represented samples or out-of-distribution samples, which inevitably exist in real-world deployment scenarios. This paper proposes to address such challenges by exploiting semi-supervised pre-training and objective regularization to approximate subjective evaluation criteria. In particular, normalized mutual information is used to quantify the speech characteristics from the learner and the reference. An anchor model is trained using pseudo labels to predict the correctness of pronunciation. An interpolated loss function is proposed to minimize not only the prediction error with respect to ground-truth scores but also the divergence between two probability distributions estimated by the speech evaluation model and the anchor model. Compared to other state-of-the-art methods on a public data-set, this approach not only achieves high performance while evaluating the entire test-set as a whole, but also brings the most evenly distributed prediction error across distinct proficiency levels. Furthermore, empirical results show the model accuracy on out-of-distribution data also compares favorably with competitive baselines.
Abstract:Current emotional text-to-speech (TTS) models predominantly conduct supervised training to learn the conversion from text and desired emotion to its emotional speech, focusing on a single emotion per text-speech pair. These models only learn the correct emotional outputs without fully comprehending other emotion characteristics, which limits their capabilities of capturing the nuances between different emotions. We propose a controllable Emo-DPO approach, which employs direct preference optimization to differentiate subtle emotional nuances between emotions through optimizing towards preferred emotions over less preferred emotional ones. Instead of relying on traditional neural architectures used in existing emotional TTS models, we propose utilizing the emotion-aware LLM-TTS neural architecture to leverage LLMs' in-context learning and instruction-following capabilities. Comprehensive experiments confirm that our proposed method outperforms the existing baselines.
Abstract:The rapid advancements in large language models (LLMs) have significantly enhanced natural language processing capabilities, facilitating the development of AudioLLMs that process and understand speech and audio inputs alongside text. Existing AudioLLMs typically combine a pre-trained audio encoder with a pre-trained LLM, which are subsequently finetuned on specific audio tasks. However, the pre-trained audio encoder has constrained capacity to capture features for new tasks and datasets. To address this, we propose to incorporate mixtures of `weak' encoders (MoWE) into the AudioLLM framework. MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size. Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks.
Abstract:Automatic Speech Recognition (ASR) systems are pivotal in transcribing speech into text, yet the errors they introduce can significantly degrade the performance of downstream tasks like summarization. This issue is particularly pronounced in clinical dialogue summarization, a low-resource domain where supervised data for fine-tuning is scarce, necessitating the use of ASR models as black-box solutions. Employing conventional data augmentation for enhancing the noise robustness of summarization models is not feasible either due to the unavailability of sufficient medical dialogue audio recordings and corresponding ASR transcripts. To address this challenge, we propose MEDSAGE, an approach for generating synthetic samples for data augmentation using Large Language Models (LLMs). Specifically, we leverage the in-context learning capabilities of LLMs and instruct them to generate ASR-like errors based on a few available medical dialogue examples with audio recordings. Experimental results show that LLMs can effectively model ASR noise, and incorporating this noisy data into the training process significantly improves the robustness and accuracy of medical dialogue summarization systems. This approach addresses the challenges of noisy ASR outputs in critical applications, offering a robust solution to enhance the reliability of clinical dialogue summarization.
Abstract:We present the first systematic evaluation examining format bias in performance of large language models (LLMs). Our approach distinguishes between two categories of an evaluation metric under format constraints to reliably and accurately assess performance: one measures performance when format constraints are adhered to, while the other evaluates performance regardless of constraint adherence. We then define a metric for measuring the format bias of LLMs and establish effective strategies to reduce it. Subsequently, we present our empirical format bias evaluation spanning four commonly used categories -- multiple-choice question-answer, wrapping, list, and mapping -- covering 15 widely-used formats. Our evaluation on eight generation tasks uncovers significant format bias across state-of-the-art LLMs. We further discover that improving the format-instruction following capabilities of LLMs across formats potentially reduces format bias. Based on our evaluation findings, we study prompting and fine-tuning with synthesized format data techniques to mitigate format bias. Our methods successfully reduce the variance in ChatGPT's performance among wrapping formats from 235.33 to 0.71 (%$^2$).
Abstract:Current strategies for achieving fine-grained prosody control in speech synthesis entail extracting additional style embeddings or adopting more complex architectures. To enable zero-shot application of pretrained text-to-speech (TTS) models, we present PRESENT (PRosody Editing without Style Embeddings or New Training), which exploits explicit prosody prediction in FastSpeech2-based models by modifying the inference process directly. We apply our text-to-prosody framework to zero-shot language transfer using a JETS model exclusively trained on English LJSpeech data. We obtain character error rates (CER) of 12.8%, 18.7% and 5.9% for German, Hungarian and Spanish respectively, beating the previous state-of-the-art CER by over 2x for all three languages. Furthermore, we allow subphoneme-level control, a first in this field. To evaluate its effectiveness, we show that PRESENT can improve the prosody of questions, and use it to generate Mandarin, a tonal language where vowel pitch varies at subphoneme level. We attain 25.3% hanzi CER and 13.0% pinyin CER with the JETS model. All our code and audio samples are available online.
Abstract:Text-to-speech (TTS) has been extensively studied for generating high-quality speech with textual inputs, playing a crucial role in various real-time applications. For real-world deployment, ensuring stable and timely generation in TTS models against minor input perturbations is of paramount importance. Therefore, evaluating the robustness of TTS models against such perturbations, commonly known as adversarial attacks, is highly desirable. In this paper, we propose TTSlow, a novel adversarial approach specifically tailored to slow down the speech generation process in TTS systems. To induce long TTS waiting time, we design novel efficiency-oriented adversarial loss to encourage endless generation process. TTSlow encompasses two attack strategies targeting both text inputs and speaker embedding. Specifically, we propose TTSlow-text, which utilizes a combination of homoglyphs-based and swap-based perturbations, along with TTSlow-spk, which employs a gradient optimization attack approach for speaker embedding. TTSlow serves as the first attack approach targeting a wide range of TTS models, including autoregressive and non-autoregressive TTS ones, thereby advancing exploration in audio security. Extensive experiments are conducted to evaluate the inference efficiency of TTS models, and in-depth analysis of generated speech intelligibility is performed using Gemini. The results demonstrate that TTSlow can effectively slow down two TTS models across three publicly available datasets. We are committed to releasing the source code upon acceptance, facilitating further research and benchmarking in this domain.
Abstract:We introduce AudioBench, a new benchmark designed to evaluate audio large language models (AudioLLMs). AudioBench encompasses 8 distinct tasks and 26 carefully selected or newly curated datasets, focusing on speech understanding, voice interpretation, and audio scene understanding. Despite the rapid advancement of large language models, including multimodal versions, a significant gap exists in comprehensive benchmarks for thoroughly evaluating their capabilities. AudioBench addresses this gap by providing relevant datasets and evaluation metrics. In our study, we evaluated the capabilities of four models across various aspects and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-source code, data, and leaderboard will offer a robust testbed for future model developments.
Abstract:Deep learning models for speech rely on large datasets, presenting computational challenges. Yet, performance hinges on training data size. Dataset Distillation (DD) aims to learn a smaller dataset without much performance degradation when training with it. DD has been investigated in computer vision but not yet in speech. This paper presents the first approach for DD to speech targeting Speech Emotion Recognition on IEMOCAP. We employ Generative Adversarial Networks (GANs) not to mimic real data but to distil key discriminative information of IEMOCAP that is useful for downstream training. The GAN then replaces the original dataset and can sample custom synthetic dataset sizes. It performs comparably when following the original class imbalance but improves performance by 0.3% absolute UAR with balanced classes. It also reduces dataset storage and accelerates downstream training by 95% in both cases and reduces speaker information which could help for a privacy application.
Abstract:The acceleration of Large Language Models (LLMs) research has opened up new possibilities for evaluating generated texts. They serve as scalable and economical evaluators, but the question of how reliable these evaluators are has emerged as a crucial research question. Prior research efforts in the meta-evaluation of LLMs as judges limit the prompting of an LLM to a single use to obtain a final evaluation decision. They then compute the agreement between LLMs' outputs and human labels. This lacks interpretability in understanding the evaluation capability of LLMs. In light of this challenge, we propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices. Our experiments illustrate that it not only provides a more interpretable window for how well LLMs evaluate, but also leads to improvements up to 39.6% for different LLMs on a variety of meta-evaluation benchmarks.