Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Michael Black

Stochastic Scene-Aware Motion Prediction

Aug 18, 2021
Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, Michael Black

* ICCV2021 

  Access Paper or Ask Questions

GIF: Generative Interpretable Faces

Aug 31, 2020
Partha Ghosh, Pravir Singh Gupta, Roy Uziel, Anurag Ranjan, Michael Black, Timo Bolkart

  Access Paper or Ask Questions

Grasping Field: Learning Implicit Representations for Human Grasps

Aug 12, 2020
Korrawe Karunratanakul, Jinlong Yang, Yan Zhang, Michael Black, Krikamol Muandet, Siyu Tang

  Access Paper or Ask Questions

From Variational to Deterministic Autoencoders

Apr 01, 2019
Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael Black, Bernhard Schölkopf

* Partha Ghosh and Mehdi S. M. Sajjadi contributed equally to this work 

  Access Paper or Ask Questions

End-to-end Learning for Graph Decomposition

Dec 23, 2018
Jie Song, Bjoern Andres, Michael Black, Otmar Hilliges, Siyu Tang

  Access Paper or Ask Questions

Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios

May 24, 2018
Rahul Tallamraju, Sujit Rajappa, Michael Black, Kamalakar Karlapalem, Aamir Ahmad

  Access Paper or Ask Questions

Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles

Feb 05, 2018
Eric Price, Guilherme Lawless, Heinrich H. Bülthoff, Michael Black, Aamir Ahmad

  Access Paper or Ask Questions

Detailed, accurate, human shape estimation from clothed 3D scan sequences

Apr 19, 2017
Chao Zhang, Sergi Pujades, Michael Black, Gerard Pons-Moll

* CVPR 2017, camera ready 

  Access Paper or Ask Questions

Deep representation learning for human motion prediction and classification

Apr 13, 2017
Judith Bütepage, Michael Black, Danica Kragic, Hedvig Kjellström

* This paper is published at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 

  Access Paper or Ask Questions