Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Matthew W. Hoffman

Modular Meta-Learning with Shrinkage


Sep 12, 2019
Yutian Chen, Abram L. Friesen, Feryal Behbahani, David Budden, Matthew W. Hoffman, Arnaud Doucet, Nando de Freitas

* 14 pages (4 main, 8 supplement), under review 

  Access Paper or Ask Questions

Large-Scale Visual Speech Recognition


Oct 01, 2018
Brendan Shillingford, Yannis Assael, Matthew W. Hoffman, Thomas Paine, CĂ­an Hughes, Utsav Prabhu, Hank Liao, Hasim Sak, Kanishka Rao, Lorrayne Bennett, Marie Mulville, Ben Coppin, Ben Laurie, Andrew Senior, Nando de Freitas


  Access Paper or Ask Questions

Distributed Distributional Deterministic Policy Gradients


Apr 23, 2018
Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB, Alistair Muldal, Nicolas Heess, Timothy Lillicrap


  Access Paper or Ask Questions

Learned Optimizers that Scale and Generalize


Sep 07, 2017
Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Nando de Freitas, Jascha Sohl-Dickstein

* Final ICML paper after reviewer suggestions 

  Access Paper or Ask Questions

The Intentional Unintentional Agent: Learning to Solve Many Continuous Control Tasks Simultaneously


Jul 11, 2017
Serkan Cabi, Sergio GĂłmez Colmenarejo, Matthew W. Hoffman, Misha Denil, Ziyu Wang, Nando de Freitas


  Access Paper or Ask Questions

Learning to Learn without Gradient Descent by Gradient Descent


Jun 12, 2017
Yutian Chen, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Timothy P. Lillicrap, Matt Botvinick, Nando de Freitas

* Accepted by ICML 2017. Previous version "Learning to Learn for Global Optimization of Black Box Functions" was published in the Deep Reinforcement Learning Workshop, NIPS 2016 

  Access Paper or Ask Questions

Learning to learn by gradient descent by gradient descent


Nov 30, 2016
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas


  Access Paper or Ask Questions

A General Framework for Constrained Bayesian Optimization using Information-based Search


Sep 04, 2016
José Miguel Hernández-Lobato, Michael A. Gelbart, Ryan P. Adams, Matthew W. Hoffman, Zoubin Ghahramani


  Access Paper or Ask Questions

Predictive Entropy Search for Bayesian Optimization with Unknown Constraints


Jul 15, 2015
José Miguel Hernández-Lobato, Michael A. Gelbart, Matthew W. Hoffman, Ryan P. Adams, Zoubin Ghahramani


  Access Paper or Ask Questions

An Entropy Search Portfolio for Bayesian Optimization


Mar 04, 2015
Bobak Shahriari, Ziyu Wang, Matthew W. Hoffman, Alexandre Bouchard-Côté, Nando de Freitas

* 10 pages, 5 figures 

  Access Paper or Ask Questions

Predictive Entropy Search for Efficient Global Optimization of Black-box Functions


Jun 10, 2014
José Miguel Hernández-Lobato, Matthew W. Hoffman, Zoubin Ghahramani


  Access Paper or Ask Questions

Exploiting correlation and budget constraints in Bayesian multi-armed bandit optimization


Nov 11, 2013
Matthew W. Hoffman, Bobak Shahriari, Nando de Freitas


  Access Paper or Ask Questions

Portfolio Allocation for Bayesian Optimization


Mar 07, 2011
Eric Brochu, Matthew W. Hoffman, Nando de Freitas

* This revision contains an updated the performance bound and other minor text changes 

  Access Paper or Ask Questions