Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Integrable Nonparametric Flows


Dec 03, 2020
David Pfau , Danilo Rezende

* Accepted to 3rd NeurIPS Workshop on Machine Learning and Physical Sciences 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Better, Faster Fermionic Neural Networks


Nov 13, 2020
James S. Spencer , David Pfau , Aleksandar Botev , W. M. C. Foulkes

* To appear at the 3rd NeurIPS Workshop on Machine Learning and Physical Science 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Disentangling by Subspace Diffusion


Jun 23, 2020
David Pfau , Irina Higgins , Aleksandar Botev , Sébastien Racanière

* 21 pages, 13 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks


Sep 05, 2019
David Pfau , James S. Spencer , Alexander G. de G. Matthews , W. M. C. Foulkes


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards a Definition of Disentangled Representations


Dec 05, 2018
Irina Higgins , David Amos , David Pfau , Sebastien Racaniere , Loic Matthey , Danilo Rezende , Alexander Lerchner


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Spectral Inference Networks: Unifying Spectral Methods With Deep Learning


Jun 06, 2018
David Pfau , Stig Petersen , Ashish Agarwal , David Barrett , Kim Stachenfeld


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Unrolled Generative Adversarial Networks


May 12, 2017
Luke Metz , Ben Poole , David Pfau , Jascha Sohl-Dickstein


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Connecting Generative Adversarial Networks and Actor-Critic Methods


Jan 18, 2017
David Pfau , Oriol Vinyals

* Added comments on inverse reinforcement learning 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning to learn by gradient descent by gradient descent


Nov 30, 2016
Marcin Andrychowicz , Misha Denil , Sergio Gomez , Matthew W. Hoffman , David Pfau , Tom Schaul , Brendan Shillingford , Nando de Freitas


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Convolution by Evolution: Differentiable Pattern Producing Networks


Jun 08, 2016
Chrisantha Fernando , Dylan Banarse , Malcolm Reynolds , Frederic Besse , David Pfau , Max Jaderberg , Marc Lanctot , Daan Wierstra


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email