Alert button
Picture for Lingyun Huang

Lingyun Huang

Alert button

Aggregation of Disentanglement: Reconsidering Domain Variations in Domain Generalization

Add code
Bookmark button
Alert button
Feb 05, 2023
Daoan Zhang, Mingkai Chen, Chenming Li, Lingyun Huang, Jianguo Zhang

Figure 1 for Aggregation of Disentanglement: Reconsidering Domain Variations in Domain Generalization
Figure 2 for Aggregation of Disentanglement: Reconsidering Domain Variations in Domain Generalization
Figure 3 for Aggregation of Disentanglement: Reconsidering Domain Variations in Domain Generalization
Figure 4 for Aggregation of Disentanglement: Reconsidering Domain Variations in Domain Generalization
Viaarxiv icon

A deep local attention network for pre-operative lymph node metastasis prediction in pancreatic cancer via multiphase CT imaging

Add code
Bookmark button
Alert button
Jan 04, 2023
Zhilin Zheng, Xu Fang, Jiawen Yao, Mengmeng Zhu, Le Lu, Lingyun Huang, Jing Xiao, Yu Shi, Hong Lu, Jianping Lu, Ling Zhang, Chengwei Shao, Yun Bian

Figure 1 for A deep local attention network for pre-operative lymph node metastasis prediction in pancreatic cancer via multiphase CT imaging
Figure 2 for A deep local attention network for pre-operative lymph node metastasis prediction in pancreatic cancer via multiphase CT imaging
Figure 3 for A deep local attention network for pre-operative lymph node metastasis prediction in pancreatic cancer via multiphase CT imaging
Figure 4 for A deep local attention network for pre-operative lymph node metastasis prediction in pancreatic cancer via multiphase CT imaging
Viaarxiv icon

Rethinking Alignment and Uniformity in Unsupervised Image Semantic Segmentation

Add code
Bookmark button
Alert button
Nov 26, 2022
Daoan Zhang, Chenming Li, Haoquan Li, Wenjian Huang, Lingyun Huang, Jianguo Zhang

Figure 1 for Rethinking Alignment and Uniformity in Unsupervised Image Semantic Segmentation
Figure 2 for Rethinking Alignment and Uniformity in Unsupervised Image Semantic Segmentation
Figure 3 for Rethinking Alignment and Uniformity in Unsupervised Image Semantic Segmentation
Figure 4 for Rethinking Alignment and Uniformity in Unsupervised Image Semantic Segmentation
Viaarxiv icon

Comprehensive and Clinically Accurate Head and Neck Organs at Risk Delineation via Stratified Deep Learning: A Large-scale Multi-Institutional Study

Add code
Bookmark button
Alert button
Nov 01, 2021
Dazhou Guo, Jia Ge, Xianghua Ye, Senxiang Yan, Yi Xin, Yuchen Song, Bing-shen Huang, Tsung-Min Hung, Zhuotun Zhu, Ling Peng, Yanping Ren, Rui Liu, Gong Zhang, Mengyuan Mao, Xiaohua Chen, Zhongjie Lu, Wenxiang Li, Yuzhen Chen, Lingyun Huang, Jing Xiao, Adam P. Harrison, Le Lu, Chien-Yu Lin, Dakai Jin, Tsung-Ying Ho

Figure 1 for Comprehensive and Clinically Accurate Head and Neck Organs at Risk Delineation via Stratified Deep Learning: A Large-scale Multi-Institutional Study
Figure 2 for Comprehensive and Clinically Accurate Head and Neck Organs at Risk Delineation via Stratified Deep Learning: A Large-scale Multi-Institutional Study
Figure 3 for Comprehensive and Clinically Accurate Head and Neck Organs at Risk Delineation via Stratified Deep Learning: A Large-scale Multi-Institutional Study
Figure 4 for Comprehensive and Clinically Accurate Head and Neck Organs at Risk Delineation via Stratified Deep Learning: A Large-scale Multi-Institutional Study
Viaarxiv icon

A deep learning pipeline for localization, differentiation, and uncertainty estimation of liver lesions using multi-phasic and multi-sequence MRI

Add code
Bookmark button
Alert button
Oct 17, 2021
Peng Wang, Yuhsuan Wu, Bolin Lai, Xiao-Yun Zhou, Le Lu, Wendi Liu, Huabang Zhou, Lingyun Huang, Jing Xiao, Adam P. Harrison, Ningyang Jia, Heping Hu

Figure 1 for A deep learning pipeline for localization, differentiation, and uncertainty estimation of liver lesions using multi-phasic and multi-sequence MRI
Figure 2 for A deep learning pipeline for localization, differentiation, and uncertainty estimation of liver lesions using multi-phasic and multi-sequence MRI
Figure 3 for A deep learning pipeline for localization, differentiation, and uncertainty estimation of liver lesions using multi-phasic and multi-sequence MRI
Figure 4 for A deep learning pipeline for localization, differentiation, and uncertainty estimation of liver lesions using multi-phasic and multi-sequence MRI
Viaarxiv icon

Multi-institutional Validation of Two-Streamed Deep Learning Method for Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and FDG-PETCT

Add code
Bookmark button
Alert button
Oct 11, 2021
Xianghua Ye, Dazhou Guo, Chen-kan Tseng, Jia Ge, Tsung-Min Hung, Ping-Ching Pai, Yanping Ren, Lu Zheng, Xinli Zhu, Ling Peng, Ying Chen, Xiaohua Chen, Chen-Yu Chou, Danni Chen, Jiaze Yu, Yuzhen Chen, Feiran Jiao, Yi Xin, Lingyun Huang, Guotong Xie, Jing Xiao, Le Lu, Senxiang Yan, Dakai Jin, Tsung-Ying Ho

Figure 1 for Multi-institutional Validation of Two-Streamed Deep Learning Method for Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and FDG-PETCT
Figure 2 for Multi-institutional Validation of Two-Streamed Deep Learning Method for Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and FDG-PETCT
Figure 3 for Multi-institutional Validation of Two-Streamed Deep Learning Method for Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and FDG-PETCT
Figure 4 for Multi-institutional Validation of Two-Streamed Deep Learning Method for Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and FDG-PETCT
Viaarxiv icon

SAME: Deformable Image Registration based on Self-supervised Anatomical Embeddings

Add code
Bookmark button
Alert button
Sep 23, 2021
Fengze Liu, Ke Yan, Adam Harrison, Dazhou Guo, Le Lu, Alan Yuille, Lingyun Huang, Guotong Xie, Jing Xiao, Xianghua Ye, Dakai Jin

Figure 1 for SAME: Deformable Image Registration based on Self-supervised Anatomical Embeddings
Figure 2 for SAME: Deformable Image Registration based on Self-supervised Anatomical Embeddings
Figure 3 for SAME: Deformable Image Registration based on Self-supervised Anatomical Embeddings
Figure 4 for SAME: Deformable Image Registration based on Self-supervised Anatomical Embeddings
Viaarxiv icon

DeepStationing: Thoracic Lymph Node Station Parsing in CT Scans using Anatomical Context Encoding and Key Organ Auto-Search

Add code
Bookmark button
Alert button
Sep 20, 2021
Dazhou Guo, Xianghua Ye, Jia Ge, Xing Di, Le Lu, Lingyun Huang, Guotong Xie, Jing Xiao, Zhongjie Liu, Ling Peng, Senxiang Yan, Dakai Jin

Figure 1 for DeepStationing: Thoracic Lymph Node Station Parsing in CT Scans using Anatomical Context Encoding and Key Organ Auto-Search
Figure 2 for DeepStationing: Thoracic Lymph Node Station Parsing in CT Scans using Anatomical Context Encoding and Key Organ Auto-Search
Figure 3 for DeepStationing: Thoracic Lymph Node Station Parsing in CT Scans using Anatomical Context Encoding and Key Organ Auto-Search
Figure 4 for DeepStationing: Thoracic Lymph Node Station Parsing in CT Scans using Anatomical Context Encoding and Key Organ Auto-Search
Viaarxiv icon

Lesion Segmentation and RECIST Diameter Prediction via Click-driven Attention and Dual-path Connection

Add code
Bookmark button
Alert button
May 05, 2021
Youbao Tang, Ke Yan, Jinzheng Cai, Lingyun Huang, Guotong Xie, Jing Xiao, Jingjing Lu, Gigin Lin, Le Lu

Figure 1 for Lesion Segmentation and RECIST Diameter Prediction via Click-driven Attention and Dual-path Connection
Figure 2 for Lesion Segmentation and RECIST Diameter Prediction via Click-driven Attention and Dual-path Connection
Figure 3 for Lesion Segmentation and RECIST Diameter Prediction via Click-driven Attention and Dual-path Connection
Figure 4 for Lesion Segmentation and RECIST Diameter Prediction via Click-driven Attention and Dual-path Connection
Viaarxiv icon

Weakly-Supervised Universal Lesion Segmentation with Regional Level Set Loss

Add code
Bookmark button
Alert button
May 03, 2021
Youbao Tang, Jinzheng Cai, Ke Yan, Lingyun Huang, Guotong Xie, Jing Xiao, Jingjing Lu, Gigin Lin, Le Lu

Figure 1 for Weakly-Supervised Universal Lesion Segmentation with Regional Level Set Loss
Figure 2 for Weakly-Supervised Universal Lesion Segmentation with Regional Level Set Loss
Figure 3 for Weakly-Supervised Universal Lesion Segmentation with Regional Level Set Loss
Figure 4 for Weakly-Supervised Universal Lesion Segmentation with Regional Level Set Loss
Viaarxiv icon