Abstract:This paper introduces SCRAG, a prediction framework inspired by social computing, designed to forecast community responses to real or hypothetical social media posts. SCRAG can be used by public relations specialists (e.g., to craft messaging in ways that avoid unintended misinterpretations) or public figures and influencers (e.g., to anticipate social responses), among other applications related to public sentiment prediction, crisis management, and social what-if analysis. While large language models (LLMs) have achieved remarkable success in generating coherent and contextually rich text, their reliance on static training data and susceptibility to hallucinations limit their effectiveness at response forecasting in dynamic social media environments. SCRAG overcomes these challenges by integrating LLMs with a Retrieval-Augmented Generation (RAG) technique rooted in social computing. Specifically, our framework retrieves (i) historical responses from the target community to capture their ideological, semantic, and emotional makeup, and (ii) external knowledge from sources such as news articles to inject time-sensitive context. This information is then jointly used to forecast the responses of the target community to new posts or narratives. Extensive experiments across six scenarios on the X platform (formerly Twitter), tested with various embedding models and LLMs, demonstrate over 10% improvements on average in key evaluation metrics. A concrete example further shows its effectiveness in capturing diverse ideologies and nuances. Our work provides a social computing tool for applications where accurate and concrete insights into community responses are crucial.
Abstract:This paper addresses the problem of optimizing the allocation of labeling resources for semi-supervised belief representation learning in social networks. The objective is to strategically identify valuable messages on social media graphs that are worth labeling within a constrained budget, ultimately maximizing the task's performance. Despite the progress in unsupervised or semi-supervised methods in advancing belief and ideology representation learning on social networks and the remarkable efficacy of graph learning techniques, the availability of high-quality curated labeled social data can greatly benefit and further improve performances. Consequently, allocating labeling efforts is a critical research problem in scenarios where labeling resources are limited. This paper proposes a graph data augmentation-inspired perturbation-based active learning strategy (PerbALGraph) that progressively selects messages for labeling according to an automatic estimator, obviating human guidance. This estimator is based on the principle that messages in the network that exhibit heightened sensitivity to structural features of the observational data indicate landmark quality that significantly influences semi-supervision processes. We design the estimator to be the prediction variance under a set of designed graph perturbations, which is model-agnostic and application-independent. Extensive experiment results demonstrate the effectiveness of the proposed strategy for belief representation learning tasks.