Abstract:Precision oncology requires forecasting clinical events and trajectories, yet modeling sparse, multi-modal clinical time series remains a critical challenge. We introduce TwinWeaver, an open-source framework that serializes longitudinal patient histories into text, enabling unified event prediction as well as forecasting with large language models, and use it to build Genie Digital Twin (GDT) on 93,054 patients across 20 cancer types. In benchmarks, GDT significantly reduces forecasting error, achieving a median Mean Absolute Scaled Error (MASE) of 0.87 compared to 0.97 for the strongest time-series baseline (p<0.001). Furthermore, GDT improves risk stratification, achieving an average concordance index (C-index) of 0.703 across survival, progression, and therapy switching tasks, surpassing the best baseline of 0.662. GDT also generalizes to out-of-distribution clinical trials, matching trained baselines at zero-shot and surpassing them with fine-tuning, achieving a median MASE of 0.75-0.88 and outperforming the strongest baseline in event prediction with an average C-index of 0.672 versus 0.648. Finally, TwinWeaver enables an interpretable clinical reasoning extension, providing a scalable and transparent foundation for longitudinal clinical modeling.
Abstract:Neural scaling laws predict how language model performance improves with increased compute. While aggregate metrics like validation loss can follow smooth power-law curves, individual downstream tasks exhibit diverse scaling behaviors: some improve monotonically, others plateau, and some even degrade with scale. We argue that predicting downstream performance from validation perplexity suffers from two limitations: averaging token-level losses obscures signal, and no simple parametric family can capture the full spectrum of scaling behaviors. To address this, we propose Neural Neural Scaling Laws (NeuNeu), a neural network that frames scaling law prediction as time-series extrapolation. NeuNeu combines temporal context from observed accuracy trajectories with token-level validation losses, learning to predict future performance without assuming any bottleneck or functional form. Trained entirely on open-source model checkpoints from HuggingFace, NeuNeu achieves 2.04% mean absolute error in predicting model accuracy on 66 downstream tasks -- a 38% reduction compared to logistic scaling laws (3.29% MAE). Furthermore, NeuNeu generalizes zero-shot to unseen model families, parameter counts, and downstream tasks. Our work suggests that predicting downstream scaling laws directly from data outperforms parametric alternatives.
Abstract:We introduce Solar Open, a 102B-parameter bilingual Mixture-of-Experts language model for underserved languages. Solar Open demonstrates a systematic methodology for building competitive LLMs by addressing three interconnected challenges. First, to train effectively despite data scarcity for underserved languages, we synthesize 4.5T tokens of high-quality, domain-specific, and RL-oriented data. Second, we coordinate this data through a progressive curriculum jointly optimizing composition, quality thresholds, and domain coverage across 20 trillion tokens. Third, to enable reasoning capabilities through scalable RL, we apply our proposed framework SnapPO for efficient optimization. Across benchmarks in English and Korean, Solar Open achieves competitive performance, demonstrating the effectiveness of this methodology for underserved language AI development.




Abstract:Foundation models have transformed machine learning for language and vision, but achieving comparable impact in physical simulation remains a challenge. Data heterogeneity and unstable long-term dynamics inhibit learning from sufficiently diverse dynamics, while varying resolutions and dimensionalities challenge efficient training on modern hardware. Through empirical and theoretical analysis, we incorporate new approaches to mitigate these obstacles, including a harmonic-analysis-based stabilization method, load-balanced distributed 2D and 3D training strategies, and compute-adaptive tokenization. Using these tools, we develop Walrus, a transformer-based foundation model developed primarily for fluid-like continuum dynamics. Walrus is pretrained on nineteen diverse scenarios spanning astrophysics, geoscience, rheology, plasma physics, acoustics, and classical fluids. Experiments show that Walrus outperforms prior foundation models on both short and long term prediction horizons on downstream tasks and across the breadth of pretraining data, while ablation studies confirm the value of our contributions to forecast stability, training throughput, and transfer performance over conventional approaches. Code and weights are released for community use.
Abstract:Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.
Abstract:Peer review in academic research aims not only to ensure factual correctness but also to identify work of high scientific potential that can shape future research directions. This task is especially critical in fast-moving fields such as artificial intelligence (AI), yet it has become increasingly difficult given the rapid growth of submissions. In this paper, we investigate an underexplored measure for identifying high-impact research: authors' own rankings of their multiple submissions to the same AI conference. Grounded in game-theoretic reasoning, we hypothesize that self-rankings are informative because authors possess unique understanding of their work's conceptual depth and long-term promise. To test this hypothesis, we conducted a large-scale experiment at a leading AI conference, where 1,342 researchers self-ranked their 2,592 submissions by perceived quality. Tracking outcomes over more than a year, we found that papers ranked highest by their authors received twice as many citations as their lowest-ranked counterparts; self-rankings were especially effective at identifying highly cited papers (those with over 150 citations). Moreover, we showed that self-rankings outperformed peer review scores in predicting future citation counts. Our results remained robust after accounting for confounders such as preprint posting time and self-citations. Together, these findings demonstrate that authors' self-rankings provide a reliable and valuable complement to peer review for identifying and elevating high-impact research in AI.
Abstract:Downstream scaling laws aim to predict task performance at larger scales from pretraining losses at smaller scales. Whether this prediction should be possible is unclear: some works demonstrate that task performance follows clear linear scaling trends under transformation, whereas others point out fundamental challenges to downstream scaling laws, such as emergence and inverse scaling. In this work, we conduct a meta-analysis of existing data on downstream scaling laws, finding that close fit to linear scaling laws only occurs in a minority of cases: 39% of the time. Furthermore, seemingly benign changes to the experimental setting can completely change the scaling trend. Our analysis underscores the need to understand the conditions under which scaling laws succeed. To fully model the relationship between pretraining loss and downstream task performance, we must embrace the cases in which scaling behavior deviates from linear trends.
Abstract:Knowledge distillation (KD) is a core component in the training and deployment of modern generative models, particularly large language models (LLMs). While its empirical benefits are well documented--enabling smaller student models to emulate the performance of much larger teachers--the underlying mechanisms by which KD improves generative quality remain poorly understood. In this work, we present a minimal working explanation of KD in generative modeling. Using a controlled simulation with mixtures of Gaussians, we demonstrate that distillation induces a trade-off between precision and recall in the student model. As the teacher distribution becomes more selective, the student concentrates more probability mass on high-likelihood regions at the expense of coverage--a behavior modulated by a single entropy-controlling parameter. We then validate this effect in a large-scale language modeling setup using the SmolLM2 family of models. Empirical results reveal the same precision-recall dynamics observed in simulation, where precision corresponds to sample quality and recall to distributional coverage. This precision-recall trade-off proves especially beneficial in scenarios where sample quality outweighs diversity, such as instruction tuning or downstream generation. Our analysis provides a simple and general explanation for the effectiveness of KD in generative modeling.
Abstract:This lecture note is intended to prepare early-year master's and PhD students in data science or a related discipline with foundational ideas in machine learning. It starts with basic ideas in modern machine learning with classification as a main target task. These basic ideas include loss formulation, backpropagation, stochastic gradient descent, generalization, model selection as well as fundamental blocks of artificial neural networks. Based on these basic ideas, the lecture note explores in depth the probablistic approach to unsupervised learning, covering directed latent variable models, product of experts, generative adversarial networks and autoregressive models. Finally, the note ends by covering a diverse set of further topics, such as reinforcement learning, ensemble methods and meta-learning. After reading this lecture note, a student should be ready to embark on studying and researching more advanced topics in machine learning and more broadly artificial intelligence.
Abstract:Training large language models (LLMs) as interactive agents presents unique challenges including long-horizon decision making and interacting with stochastic environment feedback. While reinforcement learning (RL) has enabled progress in static tasks, multi-turn agent RL training remains underexplored. We propose StarPO (State-Thinking-Actions-Reward Policy Optimization), a general framework for trajectory-level agent RL, and introduce RAGEN, a modular system for training and evaluating LLM agents. Our study on three stylized environments reveals three core findings. First, our agent RL training shows a recurring mode of Echo Trap where reward variance cliffs and gradient spikes; we address this with StarPO-S, a stabilized variant with trajectory filtering, critic incorporation, and decoupled clipping. Second, we find the shaping of RL rollouts would benefit from diverse initial states, medium interaction granularity and more frequent sampling. Third, we show that without fine-grained, reasoning-aware reward signals, agent reasoning hardly emerge through multi-turn RL and they may show shallow strategies or hallucinated thoughts. Code and environments are available at https://github.com/RAGEN-AI/RAGEN.