Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Figures and Tables:

Abstract:The typical training of neural networks using large stepsize gradient descent (GD) under the logistic loss often involves two distinct phases, where the empirical risk oscillates in the first phase but decreases monotonically in the second phase. We investigate this phenomenon in two-layer networks that satisfy a near-homogeneity condition. We show that the second phase begins once the empirical risk falls below a certain threshold, dependent on the stepsize. Additionally, we show that the normalized margin grows nearly monotonically in the second phase, demonstrating an implicit bias of GD in training non-homogeneous predictors. If the dataset is linearly separable and the derivative of the activation function is bounded away from zero, we show that the average empirical risk decreases, implying that the first phase must stop in finite steps. Finally, we demonstrate that by choosing a suitably large stepsize, GD that undergoes this phase transition is more efficient than GD that monotonically decreases the risk. Our analysis applies to networks of any width, beyond the well-known neural tangent kernel and mean-field regimes.

Via

Authors:Song Mei

Abstract:U-Nets are among the most widely used architectures in computer vision, renowned for their exceptional performance in applications such as image segmentation, denoising, and diffusion modeling. However, a theoretical explanation of the U-Net architecture design has not yet been fully established. This paper introduces a novel interpretation of the U-Net architecture by studying certain generative hierarchical models, which are tree-structured graphical models extensively utilized in both language and image domains. With their encoder-decoder structure, long skip connections, and pooling and up-sampling layers, we demonstrate how U-Nets can naturally implement the belief propagation denoising algorithm in such generative hierarchical models, thereby efficiently approximating the denoising functions. This leads to an efficient sample complexity bound for learning the denoising function using U-Nets within these models. Additionally, we discuss the broader implications of these findings for diffusion models in generative hierarchical models. We also demonstrate that the conventional architecture of convolutional neural networks (ConvNets) is ideally suited for classification tasks within these models. This offers a unified view of the roles of ConvNets and U-Nets, highlighting the versatility of generative hierarchical models in modeling complex data distributions across language and image domains.

Via

Figures and Tables:

Abstract:Diffusion models, a powerful and universal generative AI technology, have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active guidance towards task-desired properties. Despite the significant empirical success, theory of diffusion models is very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models, understanding their sample generation under various controls. Next, we overview the existing theories of diffusion models, covering their statistical properties and sampling capabilities. We adopt a progressive routine, beginning with unconditional diffusion models and connecting to conditional counterparts. Further, we review a new avenue in high-dimensional structured optimization through conditional diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.

Via

Abstract:Large Language Models (LLMs) often memorize sensitive, private, or copyrighted data during pre-training. LLM unlearning aims to eliminate the influence of undesirable data from the pre-trained model while preserving the model's utilities on other tasks. Several practical methods have recently been proposed for LLM unlearning, mostly based on gradient ascent (GA) on the loss of undesirable data. However, on certain unlearning tasks, these methods either fail to effectively unlearn the target data or suffer from catastrophic collapse -- a drastic degradation of the model's utilities. In this paper, we propose Negative Preference Optimization (NPO), a simple alignment-inspired method that could efficiently and effectively unlearn a target dataset. We theoretically show that the progression toward catastrophic collapse by minimizing the NPO loss is exponentially slower than GA. Through experiments on synthetic data and the benchmark TOFU dataset, we demonstrate that NPO-based methods achieve a better balance between unlearning the undesirable data and maintaining the model's utilities. We also observe that NPO-based methods generate more sensible outputs than GA-based methods, whose outputs are often gibberish. Remarkably, on TOFU, NPO-based methods are the first to achieve reasonable unlearning results in forgetting 50% (or more) of the training data, whereas existing methods already struggle with forgetting 10% of training data.

Via

Figures and Tables:

Abstract:The quantum approximate optimization algorithm (QAOA) is a general-purpose algorithm for combinatorial optimization. In this paper, we analyze the performance of the QAOA on a statistical estimation problem, namely, the spiked tensor model, which exhibits a statistical-computational gap classically. We prove that the weak recovery threshold of $1$-step QAOA matches that of $1$-step tensor power iteration. Additional heuristic calculations suggest that the weak recovery threshold of $p$-step QAOA matches that of $p$-step tensor power iteration when $p$ is a fixed constant. This further implies that multi-step QAOA with tensor unfolding could achieve, but not surpass, the classical computation threshold $\Theta(n^{(q-2)/4})$ for spiked $q$-tensors. Meanwhile, we characterize the asymptotic overlap distribution for $p$-step QAOA, finding an intriguing sine-Gaussian law verified through simulations. For some $p$ and $q$, the QAOA attains an overlap that is larger by a constant factor than the tensor power iteration overlap. Of independent interest, our proof techniques employ the Fourier transform to handle difficult combinatorial sums, a novel approach differing from prior QAOA analyses on spin-glass models without planted structure.

Via

Abstract:We study mean-field variational inference in a Bayesian linear model when the sample size n is comparable to the dimension p. In high dimensions, the common approach of minimizing a Kullback-Leibler divergence from the posterior distribution, or maximizing an evidence lower bound, may deviate from the true posterior mean and underestimate posterior uncertainty. We study instead minimization of the TAP free energy, showing in a high-dimensional asymptotic framework that it has a local minimizer which provides a consistent estimate of the posterior marginals and may be used for correctly calibrated posterior inference. Geometrically, we show that the landscape of the TAP free energy is strongly convex in an extensive neighborhood of this local minimizer, which under certain general conditions can be found by an Approximate Message Passing (AMP) algorithm. We then exhibit an efficient algorithm that linearly converges to the minimizer within this local neighborhood. In settings where it is conjectured that no efficient algorithm can find this local neighborhood, we prove analogous geometric properties for a local minimizer of the TAP free energy reachable by AMP, and show that posterior inference based on this minimizer remains correctly calibrated.

Via

Figures and Tables:

Abstract:While large language models based on the transformer architecture have demonstrated remarkable in-context learning (ICL) capabilities, understandings of such capabilities are still in an early stage, where existing theory and mechanistic understanding focus mostly on simple scenarios such as learning simple function classes. This paper takes initial steps on understanding ICL in more complex scenarios, by studying learning with representations. Concretely, we construct synthetic in-context learning problems with a compositional structure, where the label depends on the input through a possibly complex but fixed representation function, composed with a linear function that differs in each instance. By construction, the optimal ICL algorithm first transforms the inputs by the representation function, and then performs linear ICL on top of the transformed dataset. We show theoretically the existence of transformers that approximately implement such algorithms with mild depth and size. Empirically, we find trained transformers consistently achieve near-optimal ICL performance in this setting, and exhibit the desired dissection where lower layers transforms the dataset and upper layers perform linear ICL. Through extensive probing and a new pasting experiment, we further reveal several mechanisms within the trained transformers, such as concrete copying behaviors on both the inputs and the representations, linear ICL capability of the upper layers alone, and a post-ICL representation selection mechanism in a harder mixture setting. These observed mechanisms align well with our theory and may shed light on how transformers perform ICL in more realistic scenarios.

Via

Abstract:Large transformer models pretrained on offline reinforcement learning datasets have demonstrated remarkable in-context reinforcement learning (ICRL) capabilities, where they can make good decisions when prompted with interaction trajectories from unseen environments. However, when and how transformers can be trained to perform ICRL have not been theoretically well-understood. In particular, it is unclear which reinforcement-learning algorithms transformers can perform in context, and how distribution mismatch in offline training data affects the learned algorithms. This paper provides a theoretical framework that analyzes supervised pretraining for ICRL. This includes two recently proposed training methods -- algorithm distillation and decision-pretrained transformers. First, assuming model realizability, we prove the supervised-pretrained transformer will imitate the conditional expectation of the expert algorithm given the observed trajectory. The generalization error will scale with model capacity and a distribution divergence factor between the expert and offline algorithms. Second, we show transformers with ReLU attention can efficiently approximate near-optimal online reinforcement learning algorithms like LinUCB and Thompson sampling for stochastic linear bandits, and UCB-VI for tabular Markov decision processes. This provides the first quantitative analysis of the ICRL capabilities of transformers pretrained from offline trajectories.

Via

Abstract:We investigate the approximation efficiency of score functions by deep neural networks in diffusion-based generative modeling. While existing approximation theories utilize the smoothness of score functions, they suffer from the curse of dimensionality for intrinsically high-dimensional data. This limitation is pronounced in graphical models such as Markov random fields, common for image distributions, where the approximation efficiency of score functions remains unestablished. To address this, we observe score functions can often be well-approximated in graphical models through variational inference denoising algorithms. Furthermore, these algorithms are amenable to efficient neural network representation. We demonstrate this in examples of graphical models, including Ising models, conditional Ising models, restricted Boltzmann machines, and sparse encoding models. Combined with off-the-shelf discretization error bounds for diffusion-based sampling, we provide an efficient sample complexity bound for diffusion-based generative modeling when the score function is learned by deep neural networks.

Via

Figures and Tables:

Abstract:Attention layers -- which map a sequence of inputs to a sequence of outputs -- are core building blocks of the Transformer architecture which has achieved significant breakthroughs in modern artificial intelligence. This paper presents a rigorous theoretical study on the learning and generalization of a single multi-head attention layer, with a sequence of key vectors and a separate query vector as input. We consider the random feature setting where the attention layer has a large number of heads, with randomly sampled frozen query and key matrices, and trainable value matrices. We show that such a random-feature attention layer can express a broad class of target functions that are permutation invariant to the key vectors. We further provide quantitative excess risk bounds for learning these target functions from finite samples, using random feature attention with finitely many heads. Our results feature several implications unique to the attention structure compared with existing random features theory for neural networks, such as (1) Advantages in the sample complexity over standard two-layer random-feature networks; (2) Concrete and natural classes of functions that can be learned efficiently by a random-feature attention layer; and (3) The effect of the sampling distribution of the query-key weight matrix (the product of the query and key matrix), where Gaussian random weights with a non-zero mean result in better sample complexities over the zero-mean counterpart for learning certain natural target functions. Experiments on simulated data corroborate our theoretical findings and further illustrate the interplay between the sample size and the complexity of the target function.

Via