Abstract:Clipart, a pre-made graphic art form, offers a convenient and efficient way of illustrating visual content. Traditional workflows to convert static clipart images into motion sequences are laborious and time-consuming, involving numerous intricate steps like rigging, key animation and in-betweening. Recent advancements in text-to-video generation hold great potential in resolving this problem. Nevertheless, direct application of text-to-video generation models often struggles to retain the visual identity of clipart images or generate cartoon-style motions, resulting in unsatisfactory animation outcomes. In this paper, we introduce AniClipart, a system that transforms static clipart images into high-quality motion sequences guided by text-to-video priors. To generate cartoon-style and smooth motion, we first define B\'{e}zier curves over keypoints of the clipart image as a form of motion regularization. We then align the motion trajectories of the keypoints with the provided text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss, which encodes adequate knowledge of natural motion within a pretrained text-to-video diffusion model. With a differentiable As-Rigid-As-Possible shape deformation algorithm, our method can be end-to-end optimized while maintaining deformation rigidity. Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models, in terms of text-video alignment, visual identity preservation, and motion consistency. Furthermore, we showcase the versatility of AniClipart by adapting it to generate a broader array of animation formats, such as layered animation, which allows topological changes.
Abstract:The past years have witnessed a proliferation of large language models (LLMs). Yet, automated and unbiased evaluation of LLMs is challenging due to the inaccuracy of standard metrics in reflecting human preferences and the inefficiency in sampling informative and diverse test examples. While human evaluation remains the gold standard, it is expensive and time-consuming, especially when dealing with a large number of testing samples. To address this problem, we propose a sample-efficient human evaluation method based on MAximum Discrepancy (MAD) competition. MAD automatically selects a small set of informative and diverse instructions, each adapted to two LLMs, whose responses are subject to three-alternative forced choice by human subjects. The pairwise comparison results are then aggregated into a global ranking using the Elo rating system. We select eight representative LLMs and compare them in terms of four skills: knowledge understanding, mathematical reasoning, writing, and coding. Experimental results show that the proposed method achieves a reliable and sensible ranking of LLMs' capabilities, identifies their relative strengths and weaknesses, and offers valuable insights for further LLM advancement.
Abstract:Panoramic videos have the advantage of providing an immersive and interactive viewing experience. Nevertheless, their spherical nature gives rise to various and uncertain user viewing behaviors, which poses significant challenges for panoramic video quality assessment (PVQA). In this work, we propose an end-to-end optimized, blind PVQA method with explicit modeling of user viewing patterns through visual scanpaths. Our method consists of two modules: a scanpath generator and a quality assessor. The scanpath generator is initially trained to predict future scanpaths by minimizing their expected code length and then jointly optimized with the quality assessor for quality prediction. Our blind PVQA method enables direct quality assessment of panoramic images by treating them as videos composed of identical frames. Experiments on three public panoramic image and video quality datasets, encompassing both synthetic and authentic distortions, validate the superiority of our blind PVQA model over existing methods.
Abstract:While Multimodal Large Language Models (MLLMs) have experienced significant advancement on visual understanding and reasoning, their potentials to serve as powerful, flexible, interpretable, and text-driven models for Image Quality Assessment (IQA) remains largely unexplored. In this paper, we conduct a comprehensive and systematic study of prompting MLLMs for IQA. Specifically, we first investigate nine prompting systems for MLLMs as the combinations of three standardized testing procedures in psychophysics (i.e., the single-stimulus, double-stimulus, and multiple-stimulus methods) and three popular prompting strategies in natural language processing (i.e., the standard, in-context, and chain-of-thought prompting). We then present a difficult sample selection procedure, taking into account sample diversity and uncertainty, to further challenge MLLMs equipped with the respective optimal prompting systems. We assess three open-source and one close-source MLLMs on several visual attributes of image quality (e.g., structural and textural distortions, color differences, and geometric transformations) in both full-reference and no-reference scenarios. Experimental results show that only the close-source GPT-4V provides a reasonable account for human perception of image quality, but is weak at discriminating fine-grained quality variations (e.g., color differences) and at comparing visual quality of multiple images, tasks humans can perform effortlessly.
Abstract:Blind video quality assessment (BVQA) plays a pivotal role in evaluating and improving the viewing experience of end-users across a wide range of video-based platforms and services. Contemporary deep learning-based models primarily analyze the video content in its aggressively downsampled format, while being blind to the impact of actual spatial resolution and frame rate on video quality. In this paper, we propose a modular BVQA model, and a method of training it to improve its modularity. Specifically, our model comprises a base quality predictor, a spatial rectifier, and a temporal rectifier, responding to the visual content and distortion, spatial resolution, and frame rate changes on video quality, respectively. During training, spatial and temporal rectifiers are dropped out with some probabilities so as to make the base quality predictor a standalone BVQA model, which should work better with the rectifiers. Extensive experiments on both professionally-generated content and user generated content video databases show that our quality model achieves superior or comparable performance to current methods. Furthermore, the modularity of our model offers a great opportunity to analyze existing video quality databases in terms of their spatial and temporal complexities. Last, our BVQA model is cost-effective to add other quality-relevant video attributes such as dynamic range and color gamut as additional rectifiers.
Abstract:Contemporary no-reference image quality assessment (NR-IQA) models can effectively quantify the perceived image quality, with high correlations between model predictions and human perceptual scores on fixed test sets. However, little progress has been made in comparing NR-IQA models from a perceptual optimization perspective. Here, for the first time, we demonstrate that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement. This is achieved by taking the gradients in differentiable and bijective diffusion latents rather than in the raw pixel domain. Different NR-IQA models are likely to induce different enhanced images, which are ultimately subject to psychophysical testing. This leads to a new computational method for comparing NR-IQA models within the analysis-by-synthesis framework. Compared to conventional correlation-based metrics, our method provides complementary insights into the relative strengths and weaknesses of the competing NR-IQA models in the context of perceptual optimization.
Abstract:The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds. In its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to the na\"{i}ve geometry quantization (i.e., grid downsampling). This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression. The content-dependent hierarchical prior is constructed at the encoder side, which enables coarse-to-fine super resolution of the point cloud geometry at the decoder side. A more accurate prior generally yields improved reconstruction performance, at the cost of increased bits required to encode this side information. With a proper balance between prior accuracy and bit consumption, the proposed method demonstrates substantial Bjontegaard-delta bitrate savings on the MPEG Cat1A dataset, surpassing the octree-based and trisoup-based G-PCC v14. We provide our implementations for reproducible research at https://github.com/lidq92/mpeg-pcc-tmc13.
Abstract:High dynamic range (HDR) imaging has gained increasing popularity for its ability to faithfully reproduce the luminance levels in natural scenes. Accordingly, HDR image quality assessment (IQA) is crucial but has been superficially treated. The majority of existing IQA models are developed for and calibrated against low dynamic range (LDR) images, which have been shown to be poorly correlated with human perception of HDR image quality. In this work, we propose a family of HDR IQA models by transferring the recent advances in LDR IQA. The key step in our approach is to specify a simple inverse display model that decomposes an HDR image to a set of LDR images with different exposures, which will be assessed by existing LDR quality models. The local quality scores of each exposure are then aggregated with the help of a simple well-exposedness measure into a global quality score for each exposure, which will be further weighted across exposures to obtain the overall quality score. When assessing LDR images, the proposed HDR quality models reduce gracefully to the original LDR ones with the same performance. Experiments on four human-rated HDR image datasets demonstrate that our HDR quality models are consistently better than existing IQA methods, including the HDR-VDP family. Moreover, we demonstrate their strengths in perceptual optimization of HDR novel view synthesis.
Abstract:Blind video quality assessment (BVQA) plays an indispensable role in monitoring and improving the end-users' viewing experience in various real-world video-enabled media applications. As an experimental field, the improvements of BVQA models have been measured primarily on a few human-rated VQA datasets. Thus, it is crucial to gain a better understanding of existing VQA datasets in order to properly evaluate the current progress in BVQA. Towards this goal, we conduct a first-of-its-kind computational analysis of VQA datasets via designing minimalistic BVQA models. By minimalistic, we restrict our family of BVQA models to build only upon basic blocks: a video preprocessor (for aggressive spatiotemporal downsampling), a spatial quality analyzer, an optional temporal quality analyzer, and a quality regressor, all with the simplest possible instantiations. By comparing the quality prediction performance of different model variants on eight VQA datasets with realistic distortions, we find that nearly all datasets suffer from the easy dataset problem of varying severity, some of which even admit blind image quality assessment (BIQA) solutions. We additionally justify our claims by contrasting our model generalizability on these VQA datasets, and by ablating a dizzying set of BVQA design choices related to the basic building blocks. Our results cast doubt on the current progress in BVQA, and meanwhile shed light on good practices of constructing next-generation VQA datasets and models.
Abstract:Predicting human scanpaths when exploring panoramic videos is a challenging task due to the spherical geometry and the multimodality of the input, and the inherent uncertainty and diversity of the output. Most previous methods fail to give a complete treatment of these characteristics, and thus are prone to errors. In this paper, we present a simple new criterion for scanpath prediction based on principles from lossy data compression. This criterion suggests minimizing the expected code length of quantized scanpaths in a training set, which corresponds to fitting a discrete conditional probability model via maximum likelihood. Specifically, the probability model is conditioned on two modalities: a viewport sequence as the deformation-reduced visual input and a set of relative historical scanpaths projected onto respective viewports as the aligned path input. The probability model is parameterized by a product of discretized Gaussian mixture models to capture the uncertainty and the diversity of scanpaths from different users. Most importantly, the training of the probability model does not rely on the specification of "ground-truth" scanpaths for imitation learning. We also introduce a proportional-integral-derivative (PID) controller-based sampler to generate realistic human-like scanpaths from the learned probability model. Experimental results demonstrate that our method consistently produces better quantitative scanpath results in terms of prediction accuracy (by comparing to the assumed "ground-truths") and perceptual realism (through machine discrimination) over a wide range of prediction horizons. We additionally verify the perceptual realism improvement via a formal psychophysical experiment and the generalization improvement on several unseen panoramic video datasets.