Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Mitigating Frequency Bias in Next-Basket Recommendation via Deconfounders


Nov 16, 2022
Xiaohan Li, Zheng Liu, Luyi Ma, Kaushiki Nag, Stephen Guo, Philip Yu, Kannan Achan

* IEEE Bigdata 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Causal Structure Learning with Recommendation System


Oct 19, 2022
Shuyuan Xu, Da Xu, Evren Korpeoglu, Sushant Kumar, Stephen Guo, Kannan Achan, Yongfeng Zhang


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

NEAT: A Label Noise-resistant Complementary Item Recommender System with Trustworthy Evaluation


Feb 11, 2022
Luyi Ma, Jianpeng Xu, Jason H. D. Cho, Evren Korpeoglu, Sushant Kumar, Kannan Achan

* 11 pages, 4 figures; Published in: 2021 IEEE International Conference on Big Data (Big Data) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Generating Rich Product Descriptions for Conversational E-commerce Systems


Nov 30, 2021
Shashank Kedia, Aditya Mantha, Sneha Gupta, Stephen Guo, Kannan Achan

* Companion Proceedings of the Web Conference 2021, 349-356 
* 8 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:2007.11768 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Pre-training Recommender Systems via Reinforced Attentive Multi-relational Graph Neural Network


Nov 28, 2021
Xiaohan Li, Zhiwei Liu, Stephen Guo, Zheng Liu, Hao Peng, Philip S. Yu, Kannan Achan


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives


Oct 23, 2021
Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards the D-Optimal Online Experiment Design for Recommender Selection


Oct 23, 2021
Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Variational Inference for Category Recommendation in E-Commerce platforms


Apr 19, 2021
Ramasubramanian Balasubramanian, Venugopal Mani, Abhinav Mathur, Sushant Kumar, Kannan Achan

* 8 pages, 3 figures, 2 tables 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Temporal Kernel Approach for Deep Learning with Continuous-time Information


Mar 28, 2021
Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Theoretical Understandings of Product Embedding for E-commerce Machine Learning


Feb 24, 2021
Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
>>