Abstract:While multi-modal large language models (MLLMs) have made significant progress in complex reasoning tasks via reinforcement learning, it is commonly believed that extensive training data is necessary for improving multi-modal reasoning ability, inevitably leading to data redundancy and substantial computational costs. However, can smaller high-value datasets match or outperform full corpora for multi-modal reasoning in MLLMs? In this work, we challenge this assumption through a key observation: meaningful multi-modal reasoning is triggered by only a sparse subset of training samples, termed cognitive samples, whereas the majority contribute marginally. Building on this insight, we propose a novel data selection paradigm termed Reasoning Activation Potential (RAP), which identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning by two complementary estimators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome model principle, eliminates samples that overly rely on language priors by comparing outputs between multi-modal and text-only inputs; 2) Attention Confidence Estimator (ACE), which exploits token-level self-attention to discard samples dominated by irrelevant but over-emphasized tokens in intermediate reasoning stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM) to substitute trivial instances with cognitively challenging ones, thereby ensuring complexity for robust multi-modal reasoning. Experiments on six datasets show that our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%. Our code is available at https://github.com/Leo-ssl/RAP.
Abstract:We introduce GS2E (Gaussian Splatting to Event), a large-scale synthetic event dataset for high-fidelity event vision tasks, captured from real-world sparse multi-view RGB images. Existing event datasets are often synthesized from dense RGB videos, which typically lack viewpoint diversity and geometric consistency, or depend on expensive, difficult-to-scale hardware setups. GS2E overcomes these limitations by first reconstructing photorealistic static scenes using 3D Gaussian Splatting, and subsequently employing a novel, physically-informed event simulation pipeline. This pipeline generally integrates adaptive trajectory interpolation with physically-consistent event contrast threshold modeling. Such an approach yields temporally dense and geometrically consistent event streams under diverse motion and lighting conditions, while ensuring strong alignment with underlying scene structures. Experimental results on event-based 3D reconstruction demonstrate GS2E's superior generalization capabilities and its practical value as a benchmark for advancing event vision research.
Abstract:Text-to-image (T2I) diffusion models have achieved remarkable success in generating high-quality images from textual prompts. However, their ability to store vast amounts of knowledge raises concerns in scenarios where selective forgetting is necessary, such as removing copyrighted content, reducing biases, or eliminating harmful concepts. While existing unlearning methods can remove certain concepts, they struggle with multi-concept forgetting due to instability, residual knowledge persistence, and generation quality degradation. To address these challenges, we propose \textbf{Dynamic Mask coupled with Concept-Aware Loss}, a novel unlearning framework designed for multi-concept forgetting in diffusion models. Our \textbf{Dynamic Mask} mechanism adaptively updates gradient masks based on current optimization states, allowing selective weight modifications that prevent interference with unrelated knowledge. Additionally, our \textbf{Concept-Aware Loss} explicitly guides the unlearning process by enforcing semantic consistency through superclass alignment, while a regularization loss based on knowledge distillation ensures that previously unlearned concepts remain forgotten during sequential unlearning. We conduct extensive experiments to evaluate our approach. Results demonstrate that our method outperforms existing unlearning techniques in forgetting effectiveness, output fidelity, and semantic coherence, particularly in multi-concept scenarios. Our work provides a principled and flexible framework for stable and high-fidelity unlearning in generative models. The code will be released publicly.