Abstract:The recent upsurge in pre-trained large models (e.g. GPT-4) has swept across the entire deep learning community. Such powerful large language models (LLMs) demonstrate advanced generative ability and multimodal understanding capability, which quickly achieve new state-of-the-art performances on a variety of benchmarks. The pre-trained LLM usually plays the role as a universal AI model that can conduct various tasks, including context reasoning, article analysis and image content comprehension. However, considering the prohibitively high memory and computational cost for implementing such a large model, the conventional models (such as CNN and ViT), are still essential for many visual perception tasks. In this paper, we propose to enhance the representation ability of ordinary vision models for perception tasks (e.g. image classification) by taking advantage of large pre-trained models. We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations and achieve better performance. Firstly, we curate a high quality description set by prompting a multimodal LLM to generate descriptive text for all training images. Furthermore, we feed these detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images. During training, text embeddings will serve as extra supervising signals and be aligned with image representations learned by vision models. The alignment process helps vision models learn better and achieve higher accuracy with the assistance of pre-trained LLMs. We conduct extensive experiments to verify that the proposed algorithm consistently improves the performance for various vision models with heterogeneous architectures.
Abstract:Recently, text-guided 3D generative methods have made remarkable advancements in producing high-quality textures and geometry, capitalizing on the proliferation of large vision-language and image diffusion models. However, existing methods still struggle to create high-fidelity 3D head avatars in two aspects: (1) They rely mostly on a pre-trained text-to-image diffusion model whilst missing the necessary 3D awareness and head priors. This makes them prone to inconsistency and geometric distortions in the generated avatars. (2) They fall short in fine-grained editing. This is primarily due to the inherited limitations from the pre-trained 2D image diffusion models, which become more pronounced when it comes to 3D head avatars. In this work, we address these challenges by introducing a versatile coarse-to-fine pipeline dubbed HeadSculpt for crafting (i.e., generating and editing) 3D head avatars from textual prompts. Specifically, we first equip the diffusion model with 3D awareness by leveraging landmark-based control and a learned textual embedding representing the back view appearance of heads, enabling 3D-consistent head avatar generations. We further propose a novel identity-aware editing score distillation strategy to optimize a textured mesh with a high-resolution differentiable rendering technique. This enables identity preservation while following the editing instruction. We showcase HeadSculpt's superior fidelity and editing capabilities through comprehensive experiments and comparisons with existing methods.
Abstract:Personalized text-to-image generation using diffusion models has recently been proposed and attracted lots of attention. Given a handful of images containing a novel concept (e.g., a unique toy), we aim to tune the generative model to capture fine visual details of the novel concept and generate photorealistic images following a text condition. We present a plug-in method, named ViCo, for fast and lightweight personalized generation. Specifically, we propose an image attention module to condition the diffusion process on the patch-wise visual semantics. We introduce an attention-based object mask that comes almost at no cost from the attention module. In addition, we design a simple regularization based on the intrinsic properties of text-image attention maps to alleviate the common overfitting degradation. Unlike many existing models, our method does not finetune any parameters of the original diffusion model. This allows more flexible and transferable model deployment. With only light parameter training (~6% of the diffusion U-Net), our method achieves comparable or even better performance than all state-of-the-art models both qualitatively and quantitatively.
Abstract:Large language models (LLMs) have shown remarkable capabilities across a broad range of tasks involving question answering and the generation of coherent text and code. Comprehensively understanding the strengths and weaknesses of LLMs is beneficial for safety, downstream applications and improving performance. In this work, we investigate the degree to which GPT-4 has acquired factual geographic knowledge and is capable of using this knowledge for interpretative reasoning, which is especially important for applications that involve geographic data, such as geospatial analysis, supply chain management, and disaster response. To this end, we design and conduct a series of diverse experiments, starting from factual tasks such as location, distance and elevation estimation to more complex questions such as generating country outlines and travel networks, route finding under constraints and supply chain analysis. We provide a broad characterisation of what GPT-4 (without plugins or Internet access) knows about the world, highlighting both potentially surprising capabilities but also limitations.
Abstract:The tremendous success of large models trained on extensive datasets demonstrates that scale is a key ingredient in achieving superior results. Therefore, the reflection on the rationality of designing knowledge distillation (KD) approaches for limited-capacity architectures solely based on small-scale datasets is now deemed imperative. In this paper, we identify the \emph{small data pitfall} that presents in previous KD methods, which results in the underestimation of the power of vanilla KD framework on large-scale datasets such as ImageNet-1K. Specifically, we show that employing stronger data augmentation techniques and using larger datasets can directly decrease the gap between vanilla KD and other meticulously designed KD variants. This highlights the necessity of designing and evaluating KD approaches in the context of practical scenarios, casting off the limitations of small-scale datasets. Our investigation of the vanilla KD and its variants in more complex schemes, including stronger training strategies and different model capacities, demonstrates that vanilla KD is elegantly simple but astonishingly effective in large-scale scenarios. Without bells and whistles, we obtain state-of-the-art ResNet-50, ViT-S, and ConvNeXtV2-T models for ImageNet, which achieve 83.1\%, 84.3\%, and 85.0\% top-1 accuracy, respectively. PyTorch code and checkpoints can be found at https://github.com/Hao840/vanillaKD.
Abstract:In this paper, we address the problem of generalized category discovery (GCD), \ie, given a set of images where part of them are labelled and the rest are not, the task is to automatically cluster the images in the unlabelled data, leveraging the information from the labelled data, while the unlabelled data contain images from the labelled classes and also new ones. GCD is similar to semi-supervised learning (SSL) but is more realistic and challenging, as SSL assumes all the unlabelled images are from the same classes as the labelled ones. We also do not assume the class number in the unlabelled data is known a-priori, making the GCD problem even harder. To tackle the problem of GCD without knowing the class number, we propose an EM-like framework that alternates between representation learning and class number estimation. We propose a semi-supervised variant of the Gaussian Mixture Model (GMM) with a stochastic splitting and merging mechanism to dynamically determine the prototypes by examining the cluster compactness and separability. With these prototypes, we leverage prototypical contrastive learning for representation learning on the partially labelled data subject to the constraints imposed by the labelled data. Our framework alternates between these two steps until convergence. The cluster assignment for an unlabelled instance can then be retrieved by identifying its nearest prototype. We comprehensively evaluate our framework on both generic image classification datasets and challenging fine-grained object recognition datasets, achieving state-of-the-art performance.
Abstract:We propose SimSC, a remarkably simple framework, to address the problem of semantic matching only based on the feature backbone. We discover that when fine-tuning ImageNet pre-trained backbone on the semantic matching task, L2 normalization of the feature map, a standard procedure in feature matching, produces an overly smooth matching distribution and significantly hinders the fine-tuning process. By setting an appropriate temperature to the softmax, this over-smoothness can be alleviated and the quality of features can be substantially improved. We employ a learning module to predict the optimal temperature for fine-tuning feature backbones. This module is trained together with the backbone and the temperature is updated online. We evaluate our method on three public datasets and demonstrate that we can achieve accuracy on par with state-of-the-art methods under the same backbone without using a learned matching head. Our method is versatile and works on various types of backbones. We show that the accuracy of our framework can be easily improved by coupling it with more powerful backbones.
Abstract:Interpreting remote sensing imagery enables numerous downstream applications ranging from land-use planning to deforestation monitoring. Robustly classifying this data is challenging due to the Earth's geographic diversity. While many distinct satellite and aerial image classification datasets exist, there is yet to be a benchmark curated that suitably covers this diversity. In this work, we introduce SATellite ImageNet (SATIN), a metadataset curated from 27 existing remotely sensed datasets, and comprehensively evaluate the zero-shot transfer classification capabilities of a broad range of vision-language (VL) models on SATIN. We find SATIN to be a challenging benchmark-the strongest method we evaluate achieves a classification accuracy of 52.0%. We provide a $\href{https://satinbenchmark.github.io}{\text{public leaderboard}}$ to guide and track the progress of VL models in this important domain.
Abstract:We tackle the issue of generalized category discovery (GCD). GCD considers the open-world problem of automatically clustering a partially labelled dataset, in which the unlabelled data contain instances from novel categories and also the labelled classes. In this paper, we address the GCD problem without a known category number in the unlabelled data. We propose a framework, named CiPR, to bootstrap the representation by exploiting Cross-instance Positive Relations for contrastive learning in the partially labelled data which are neglected in existing methods. First, to obtain reliable cross-instance relations to facilitate the representation learning, we introduce a semi-supervised hierarchical clustering algorithm, named selective neighbor clustering (SNC), which can produce a clustering hierarchy directly from the connected components in the graph constructed by selective neighbors. We also extend SNC to be capable of label assignment for the unlabelled instances with the given class number. Moreover, we present a method to estimate the unknown class number using SNC with a joint reference score considering clustering indexes of both labelled and unlabelled data. Finally, we thoroughly evaluate our framework on public generic image recognition datasets and challenging fine-grained datasets, all establishing the new state-of-the-art.
Abstract:We present DreamAvatar, a text-and-shape guided framework for generating high-quality 3D human avatars with controllable poses. While encouraging results have been produced by recent methods on text-guided 3D common object generation, generating high-quality human avatars remains an open challenge due to the complexity of the human body's shape, pose, and appearance. We propose DreamAvatar to tackle this challenge, which utilizes a trainable NeRF for predicting density and color features for 3D points and a pre-trained text-to-image diffusion model for providing 2D self-supervision. Specifically, we leverage SMPL models to provide rough pose and shape guidance for the generation. We introduce a dual space design that comprises a canonical space and an observation space, which are related by a learnable deformation field through the NeRF, allowing for the transfer of well-optimized texture and geometry from the canonical space to the target posed avatar. Additionally, we exploit a normal-consistency regularization to allow for more vivid generation with detailed geometry and texture. Through extensive evaluations, we demonstrate that DreamAvatar significantly outperforms existing methods, establishing a new state-of-the-art for text-and-shape guided 3D human generation.