Abstract:Melody preservation is crucial in singing voice conversion (SVC). However, in many scenarios, audio is often accompanied with background music (BGM), which can cause audio distortion and interfere with the extraction of melody and other key features, significantly degrading SVC performance. Previous methods have attempted to address this by using more robust neural network-based melody extractors, but their performance drops sharply in the presence of complex accompaniment. Other approaches involve performing source separation before conversion, but this often introduces noticeable artifacts, leading to a significant drop in conversion quality and increasing the user's operational costs. To address these issues, we introduce a novel SVC method that uses self-supervised representation-based melody features to improve melody modeling accuracy in the presence of BGM. In our experiments, we compare the effectiveness of different self-supervised learning (SSL) models for melody extraction and explore for the first time how SSL benefits the task of melody extraction. The experimental results demonstrate that our proposed SVC model significantly outperforms existing baseline methods in terms of melody accuracy and shows higher similarity and naturalness in both subjective and objective evaluations across noisy and clean audio environments.
Abstract:Free-text explanations are expressive and easy to understand, but many datasets lack annotated explanation data, making it challenging to train models for explainable predictions. To address this, we investigate how to use existing explanation datasets for self-rationalization and evaluate models' out-of-distribution (OOD) performance. We fine-tune T5-Large and OLMo-7B models and assess the impact of fine-tuning data quality, the number of fine-tuning samples, and few-shot selection methods. The models are evaluated on 19 diverse OOD datasets across three tasks: natural language inference (NLI), fact-checking, and hallucination detection in abstractive summarization. For the generated explanation evaluation, we conduct a human study on 13 selected models and study its correlation with the Acceptability score (T5-11B) and three other LLM-based reference-free metrics. Human evaluation shows that the Acceptability score correlates most strongly with human judgments, demonstrating its effectiveness in evaluating free-text explanations. Our findings reveal: 1) few annotated examples effectively adapt models for OOD explanation generation; 2) compared to sample selection strategies, fine-tuning data source has a larger impact on OOD performance; and 3) models with higher label prediction accuracy tend to produce better explanations, as reflected by higher Acceptability scores.
Abstract:The rapid growth of submissions to top-tier Artificial Intelligence (AI) and Machine Learning (ML) conferences has prompted many venues to transition from closed to open review platforms. Some have fully embraced open peer reviews, allowing public visibility throughout the process, while others adopt hybrid approaches, such as releasing reviews only after final decisions or keeping reviews private despite using open peer review systems. In this work, we analyze the strengths and limitations of these models, highlighting the growing community interest in transparent peer review. To support this discussion, we examine insights from Paper Copilot, a website launched two years ago to aggregate and analyze AI / ML conference data while engaging a global audience. The site has attracted over 200,000 early-career researchers, particularly those aged 18-34 from 177 countries, many of whom are actively engaged in the peer review process. Drawing on our findings, this position paper advocates for a more transparent, open, and well-regulated peer review aiming to foster greater community involvement and propel advancements in the field.
Abstract:Recent advancements in data-driven weather forecasting models have delivered deterministic models that outperform the leading operational forecast systems based on traditional, physics-based models. However, these data-driven models are typically trained with a mean squared error loss function, which causes smoothing of fine scales through a "double penalty" effect. We develop a simple, parameter-free modification to this loss function that avoids this problem by separating the loss attributable to decorrelation from the loss attributable to spectral amplitude errors. Fine-tuning the GraphCast model with this new loss function results in sharp deterministic weather forecasts, an increase of the model's effective resolution from 1,250km to 160km, improvements to ensemble spread, and improvements to predictions of tropical cyclone strength and surface wind extremes.
Abstract:We introduce AnyEnhance, a unified generative model for voice enhancement that processes both speech and singing voices. Based on a masked generative model, AnyEnhance is capable of handling both speech and singing voices, supporting a wide range of enhancement tasks including denoising, dereverberation, declipping, super-resolution, and target speaker extraction, all simultaneously and without fine-tuning. AnyEnhance introduces a prompt-guidance mechanism for in-context learning, which allows the model to natively accept a reference speaker's timbre. In this way, it could boost enhancement performance when a reference audio is available and enable the target speaker extraction task without altering the underlying architecture. Moreover, we also introduce a self-critic mechanism into the generative process for masked generative models, yielding higher-quality outputs through iterative self-assessment and refinement. Extensive experiments on various enhancement tasks demonstrate AnyEnhance outperforms existing methods in terms of both objective metrics and subjective listening tests. Demo audios are publicly available at https://amphionspace.github.io/anyenhance/.
Abstract:In this paper, we address a crucial but often overlooked issue in applying reinforcement learning (RL) to radio resource management (RRM) in wireless communications: the mismatch between the discounted reward RL formulation and the undiscounted goal of wireless network optimization. To the best of our knowledge, we are the first to systematically investigate this discrepancy, starting with a discussion of the problem formulation followed by simulations that quantify the extent of the gap. To bridge this gap, we introduce the use of average reward RL, a method that aligns more closely with the long-term objectives of RRM. We propose a new method called the Average Reward Off policy Soft Actor Critic (ARO SAC) is an adaptation of the well known Soft Actor Critic algorithm in the average reward framework. This new method achieves significant performance improvement our simulation results demonstrate a 15% gain in the system performance over the traditional discounted reward RL approach, underscoring the potential of average reward RL in enhancing the efficiency and effectiveness of wireless network optimization.
Abstract:In this paper, we push the boundaries of fine-grained 3D generation into truly creative territory. Current methods either lack intricate details or simply mimic existing objects -- we enable both. By lifting 2D fine-grained understanding into 3D through multi-view diffusion and modeling part latents as continuous distributions, we unlock the ability to generate entirely new, yet plausible parts through interpolation and sampling. A self-supervised feature consistency loss further ensures stable generation of these unseen parts. The result is the first system capable of creating novel 3D objects with species-specific details that transcend existing examples. While we demonstrate our approach on birds, the underlying framework extends beyond things that can chirp! Code will be released at https://github.com/kamwoh/chirpy3d.
Abstract:Stereo images captured by Mars rovers are transmitted after lossy compression due to the limited bandwidth between Mars and Earth. Unfortunately, this process results in undesirable compression artifacts. In this paper, we present a novel stereo quality enhancement approach for Martian images, named MarsSQE. First, we establish the first dataset of stereo Martian images. Through extensive analysis of this dataset, we observe that cross-view correlations in Martian images are notably high. Leveraging this insight, we design a bi-level cross-view attention-based quality enhancement network that fully exploits these inherent cross-view correlations. Specifically, our network integrates pixel-level attention for precise matching and patch-level attention for broader contextual information. Experimental results demonstrate the effectiveness of our MarsSQE approach.
Abstract:Existing local dynamic route planning algorithms, when directly applied to terrain following/terrain avoidance, or dynamic obstacle avoidance for large and medium-sized fixed-wing aircraft, fail to simultaneously meet the requirements of real-time performance, long-distance planning, and the dynamic constraints of large and medium-sized aircraft. To deal with this issue, this paper proposes the Motion Dynamic RRT based Fluid Field - PPO for dynamic TF/TA routing planning. Firstly, the action and state spaces of the proximal policy gradient algorithm are redesigned using disturbance flow fields and artificial potential field algorithms, establishing an aircraft dynamics model, and designing a state transition process based on this model. Additionally, a reward function is designed to encourage strategies for obstacle avoidance, terrain following, terrain avoidance, and safe flight. Experimental results on real DEM data demonstrate that our algorithm can complete long-distance flight tasks through collision-free trajectory planning that complies with dynamic constraints, without the need for prior global planning.
Abstract:Accurately measuring the geometry and spatially-varying reflectance of real-world objects is a complex task due to their intricate shapes formed by concave features, hollow engravings and diverse surfaces, resulting in inter-reflection and occlusion when photographed. Moreover, issues like lens flare and overexposure can arise from interference from secondary reflections and limitations of hardware even in professional studios. In this paper, we propose a novel approach using polarized reflectance field capture and a comprehensive statistical analysis algorithm to obtain highly accurate surface normals (within 0.1mm/px) and spatially-varying reflectance data, including albedo, specular separation, roughness, and anisotropy parameters for realistic rendering and analysis. Our algorithm removes image artifacts via analytical modeling and further employs both an initial step and an optimization step computed on the whole image collection to further enhance the precision of per-pixel surface reflectance and normal measurement. We showcase the captured shapes and reflectance of diverse objects with a wide material range, spanning from highly diffuse to highly glossy - a challenge unaddressed by prior techniques. Our approach enhances downstream applications by offering precise measurements for realistic rendering and provides a valuable training dataset for emerging research in inverse rendering. We will release the polarized reflectance fields of several captured objects with this work.