Abstract:Ensuring the safety and extended operational life of fighter aircraft necessitates frequent and exhaustive inspections. While surface defect detection is feasible for human inspectors, manual methods face critical limitations in scalability, efficiency, and consistency due to the vast surface area, structural complexity, and operational demands of aircraft maintenance. We propose a smart surface damage detection and localization system for fighter aircraft, termed J-DDL. J-DDL integrates 2D images and 3D point clouds of the entire aircraft surface, captured using a combined system of laser scanners and cameras, to achieve precise damage detection and localization. Central to our system is a novel damage detection network built on the YOLO architecture, specifically optimized for identifying surface defects in 2D aircraft images. Key innovations include lightweight Fasternet blocks for efficient feature extraction, an optimized neck architecture incorporating Efficient Multiscale Attention (EMA) modules for superior feature aggregation, and the introduction of a novel loss function, Inner-CIOU, to enhance detection accuracy. After detecting damage in 2D images, the system maps the identified anomalies onto corresponding 3D point clouds, enabling accurate 3D localization of defects across the aircraft surface. Our J-DDL not only streamlines the inspection process but also ensures more comprehensive and detailed coverage of large and complex aircraft exteriors. To facilitate further advancements in this domain, we have developed the first publicly available dataset specifically focused on aircraft damage. Experimental evaluations validate the effectiveness of our framework, underscoring its potential to significantly advance automated aircraft inspection technologies.
Abstract:Spiking neural networks (SNNs), inspired by the spiking computation paradigm of the biological neural systems, have exhibited superior energy efficiency in 2D classification tasks over traditional artificial neural networks (ANNs). However, the regression potential of SNNs has not been well explored, especially in 3D point cloud processing.In this paper, we propose noise-injected spiking graph convolutional networks to leverage the full regression potential of SNNs in 3D point cloud denoising. Specifically, we first emulate the noise-injected neuronal dynamics to build noise-injected spiking neurons. On this basis, we design noise-injected spiking graph convolution for promoting disturbance-aware spiking representation learning on 3D points. Starting from the spiking graph convolution, we build two SNN-based denoising networks. One is a purely spiking graph convolutional network, which achieves low accuracy loss compared with some ANN-based alternatives, while resulting in significantly reduced energy consumption on two benchmark datasets, PU-Net and PC-Net. The other is a hybrid architecture that combines ANN-based learning with a high performance-efficiency trade-off in just a few time steps. Our work lights up SNN's potential for 3D point cloud denoising, injecting new perspectives of exploring the deployment on neuromorphic chips while paving the way for developing energy-efficient 3D data acquisition devices.